Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (2024)

\addbibresource

paperpile.bib {refsection}

Landon SchofieldDepartment of Chemical Engineering, Massachusetts Institute of TechnologyBenjamin ParenDepartment of Chemical Engineering and Materials Science, Stevens Institute of TechnologyRuaridh MacdonaldMIT Energy InitiativeYang Shao-HornDepartment of Mechanical Engineering, Massachusetts Institute of TechnologyDharik MallapragadaDepartment of Chemical and Biomolecular Engineering, New York University

Abstract

We present a techno-economic optimization model for evaluating the design and operation of proton exchange membrane (PEM) electrolyzers, crucial for hydrogen production powered by variable renewable electricity. This model integrates a 0-D physics representation of the electrolyzer stack, complete mass and energy balances, operational constraints, and empirical data on use-dependent degradation. Utilizing a decomposition approach, the model predicts optimal electrolyzer size, operation, and necessary hydrogen storage to satisfy baseload demands across various technology and electricity price scenarios. Analysis for 2022 shows that including degradation effects raises the levelized cost of hydrogen from $4.56/kg to $6.60/kg and decreases stack life to two years. However, projections for 2030 anticipate a significant reduction in costs to approximately $2.50/kg due to lower capital expenses, leading to larger stacks, extended lifetimes, and less hydrogen storage. This approach is adaptable to other electrochemical systems relevant for decarbonization.

1 Introduction

Policies emphasizing economy-wide decarbonization are increasingly focused on promoting production of low-carbon hydrogen (H2) to address emissions from difficult-to-electrify end-uses. For example, the emissions-indexed production tax credit (PTC) for \chH2 as part of the Inflation Reduction Act in the U.S. provides up to $3/kg \chH2, which has led to several project announcements for H2 production using electrolyzers powered by low-carbon electricity [Yarmuth2021-wu, UnknownUnknown-ci, Arjona2023-bc]. Proposed electrolyzer projects include both “islanded” configurations, where renewable electricity is co-located with the electrolyzer and is the sole source of electricity input, as well as “grid-connected” systems involving using grid electricity (typically from the wholesale market) as well as on-site or contracted (via power purchase agreements) renewable electricity supply. In both cases, cost-effective operation of the electrolyzer will likely involve operating at much less than 100% capacity utilization to manage fluctuations in variable renewable energy (VRE) availability as well as grid electricity prices (that are also increasingly influenced by VRE availability) [Stansberry2017-eo, Laoun2016-mb, Sarrias-Mena2015-vy, Saadi2016-xg, Zhao2015-bk]. This part load operation not only has implications for capital utilization, which has been extensively studied, but also stack lifetime through accelerated degradation which is less well studied and could impact the overall economics of H2 production [Kalinci2015-re, Shibata2015-qt, Hurtubia2021-jo]. Here, we focus on the answering this question in the context of grid-connected proton exchange membrane (PEM) electrolyzers.

As of 2022, global installations of electrolyzers totalled 700 MWe 111Unlike many technologies, electrolyzer capacity is typically reported on the basis of nameplate electricity input rather than \chH2 output, mostly composed of alkaline electrolyzers [International_Energy_Agency2023-wq]. While the share of PEM electrolyzers is relatively small at 30% of total installed capacity, several appealing attributes compared to alkaline systems are expected to drive their deployment in the future [International_Energy_Agency2023-wq]. In particular: a) their ability to operate at higher current densities (\geq 1 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG), which allows for smaller stack areas (and possibly lower areal footprint) to produce the same amount of H2, and b) ability to operate with a differential pressure between the anode and cathode, which enables production of high pressure H2 product [Carmo2013-bq, International_Energy_Agency2023-wq]. The greater range of current density operation also creates the potential for increased operational flexibility which is an important criteria for cost-effective electrolyzer projects to manage fluctuations in temporal attributes, such as emissions or cost, of electricity supply [Guerra2019-ua, Corengia2022-ha, Chung2024-vr, Tsay2023-se]. The importance of such operational flexibility for power systems balancing is likely to grow with an increasing share of VRE supply in future low-carbon grids, owing increasing instances of near-zero prices and very high prices compared to today’s fossil-fuel dominant systems [Mallapragada_undated-iq].

Several techno-economic optimization studies have highlighted the importance of dynamic operation in minimizing the operating cost of other electrochemical processes when utilizing electricity sourced from VRE that is co-located or supplied via connection to the electric grid [Otashu2019-ge, Hofmann2022-ti, Weigert2021-ik]. Studies on PEM systems reveal that cost-optimal dynamic operation involves operating at high current densities (say much-greater-than\gg 2 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG) during times of abundant VRE supply or low electricity prices, as well as periods of idling or near-zero current densities during high electricity prices or low VRE supply periods, that collectively results in smaller stack areas when compared to an equivalent steady state electrolyzer operating at current densities near 1-2 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG [Espinosa-Lopez2018-hb, Stansberry2020-zm, Chung2024-vr, Corengia2020-on, Corengia2022-ha].

Dynamic operation of PEM electrolyzers via modulation of the operating current density brings with it several challenges – namely, heat management, gas crossover and associated safety concerns, and stack degradation. Heat management in PEM systems is typically undertaken via excess feed water on the anode side [Stansberry2020-zm, Holst2021-nd]. In an effort to model a 46 kWe electrolyzer connected to renewable energy, Espinosa et. al developed a model of the temperature response of PEM systems at varying current density with this excess feed water strategy [Espinosa-Lopez2018-hb]. With increasing current densities, the additional heat generated due to the higher overpotential will increase the water flow rates needed for heat management, and could create create implicit constraints on maximum current density levels. At the same time, in the absence of sufficient heat evacuation through increasing feed water flow rate, the cell temperature could rise and and begin vaporizing feed water as well as damage the membrane electrode assembly.

Another operational challenge of dynamic operation is hydrogen crossover to the anode under differential pressure operation, which represents both an energy loss and safety concern. The pressurized cathode provides a driving force for hydrogen to cross the membrane and mix with the oxygen at the anode. At 4% hydrogen in oxygen, the mixture reaches its lower flammability limit (LFL), presenting serious safety concerns. This crossover is generally greater under differential pressure operation and has been shown to be most problematic at low current densities when there is not enough oxygen production at the anode to keep the hydrogen concentration low [Bernt2020-af]. While the crossover phenomenon has been well documented experimentally, most dynamic techno-economic models of PEM systems exclude any discussion of safety, crossover, or mitigation mechanisms (e.g. recombination catalyst on the anode side) [Christopher_Bryce_Capuano_Morgan_Elizabeth_Pertosos_Nemanja_Danilovic2018-lw, Nicolas_Guillet2014-tq].

It is common for PEM systems to undergo degradation over time, which requires an increased voltage to the cell for the same current as a result of the increased high frequency resistances in the stack [Hartig-Weis2021-mi]. This degradation is a result of dissolution of catalyst, chemical degradation of the membrane, degradation of the bipolar plate, degradation of the current collector, and manufacturing defects [Feng2017-kz, Weis2019-vj]. The industry standard model for PEM electrolysis techno-economics made by the National Renewable Energy Laboratory and U.S. Department of Energy assumes that the rate of degradation (increase in cell voltage) is independent of operation [Brian_D_James_Daniel_A_DeSantis_Genevieve_Saur2016-wz]. For electrolyzers operating statically (i.e. at constant current density), this constant rate of degradation may hold true. However, experimental studies have shown that degradation rate will be impacted by changes in operating current density [Suermann2019-kz, Rakousky2017-te, Papakonstantinou2020-hj, Alia2019-lw, Li2021-nj, Sun2014-iz, Frensch2019-ff]. To our knowledge, no techno-economic systems of PEMH2 production systems account for this usage-based degradation though it plays a large roll in stack lifetime estimates and therefore replacement costs in these systems. Such operation-dependent degradation may alter the incentives for dynamic operation and consequently impact the levelized cost of hydrogen (LCOH).

Our work seeks to address the above gaps in the techno-economic modeling of PEM electrolyzer systems. Our approach is based on a dynamic optimization framework that co-optimizes the design (stack area and on-site \chH2 storage) and operation of the PEM electrolysis-based \chH2 production process, with the following unique model elements: a) accounting for dynamic mass and energy balances at 15 min resolution at each electrode as well as flux across the membrane, b) development and use of an empirical correlation for characterizing degradation as a function of current density, which allows us to co-optimize stack replacement times, and c) accounting for safety and temperature related operational constraints and their impact on cost-optimal design and operation of the system. We use the model to investigate the cost-optimal sizing and operation of the PEM system under a range of electricity price scenarios representative of present low-VRE grids and future high-VRE penetration grids, as well as capital cost assumptions for the PEM electrolyzer. Through a systematic scenario-based framework, we isolate the impact of degradation on the levelized cost of hydrogen production. For instance, under 2022 capital cost assumptions for PEM systems, accounting for degradation could increase calculated LCOH by about 45% due to the use of larger stack sizes (2.3x) to minimize operation at high current densities (and hence degradation) and more frequent stack replacements (every 2 vs. 7 years) also due to degradation. Moreover, accounting for degradation after fixing the design of the system to that obtained without accounting for degradation could increase LCOH by a greater amount of 52%, which highlights the value of the proposed integrated design and scheduling (IDS) framework.

In general, scenarios that do not consider degradation tend to have a wider current density distribution, size larger \chH2 storage, and utilize the electrolyzer more than scenarios that account for degradation. Applying the model to future electrolyzer capital cost and electricity price scenarios reveals several interesting findings. First, levelized costs are estimated around $2.50/kg dominated by cost of electricity and other fixed operating costs. Second, as stack costs decrease, the initially installed stack size increases, which further reduces instances of high current density operation and results in: a) increase time for stack replacement from 2 to 3-5 years depending on the electricity price scenario and CAPEX assumption and b) reduced capacity of installed \chH2 storage (0.1 days of \chH2 demand vs. 0.5 or greater in the 2022 scenarios).

Finally, we also investigated the impact of enforcing a safety constraint that limits \chH2 build up in the anode to avoid an explosive mixture. We found that without this constraint, the electrolyzer’s cost-optimal operation profile tends to favor lower current densities which lowers the overall levelized cost but could result in \chH2 concentration in anode exceeding 2% threshold and 4% LFL in a few periods.

2 Methods

2.1 Model Overview

In order to explore dynamic operation in the context of heat management, safety, and stack degradation, we develop a 0-D model of the electrolyzer process shown in Figure 1, which accounts for electrode-level mass balances, cell-level energy balances as well as electrochemical conversion described by the bottom-up characterization of the polarization curve. Below we provide a brief description of the model, with the complete mathematical description given in the supporting information (SI), along with the model nomenclature in Tables S1 - S3.

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (1)

Figure 1 shows the process flow diagram for the electrolyzer and balance of plant which has been adapted from the literature and is consistent with industrial PEM installations [Holst2021-nd, Espinosa-Lopez2018-hb, Caparros_Mancera2020-rv]. Deionized water is pumped into the electrolyzer where the electrolytic reaction takes place. Gases and excess water leave in streams 3 and 4 and are sent to flash drums to separate the vapor from the liquid. It is assumed that a negligible amount of gas is dissolved in the liquid water leaving the flash drum. Water from the flash drum is cooled and recycled back into the electrolyzer stack. The \chH2 in stream 6 is dried and then either compressed into \chH2 storage or used to satisfy the \chH2 demand. Since the focus of the study is on H2 production, the treatment of the anode gas stream, primarily composed of O2, is not considered for this study. Stream 11 is a nitrogen purge stream that is modeled as a backstop to ensure \chH2 concentration in the anode stays well below the lower flammability limit. This stream is only used as a fail safe to make sure an explosive mixture is not formed at the anode.

2.2 General Optimization Formulation

Given a fixed demand for \chH2, the system as described and the model presented in the SI can be used to minimize the total cost of a PEM electrolyzer system. The general form for such an optimization is shown in Equation 1.

minx,ysubscript𝑥𝑦\displaystyle\min_{x,y}roman_min start_POSTSUBSCRIPT italic_x , italic_y end_POSTSUBSCRIPTPV=Cstack(x)+Cstorage(x)+CvOPEX(x,y)𝑃𝑉superscript𝐶𝑠𝑡𝑎𝑐𝑘𝑥superscript𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑥superscript𝐶𝑣𝑂𝑃𝐸𝑋𝑥𝑦\displaystyle PV=C^{stack}(x)+C^{storage}(x)+C^{vOPEX}(x,y)italic_P italic_V = italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_a italic_c italic_k end_POSTSUPERSCRIPT ( italic_x ) + italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_o italic_r italic_a italic_g italic_e end_POSTSUPERSCRIPT ( italic_x ) + italic_C start_POSTSUPERSCRIPT italic_v italic_O italic_P italic_E italic_X end_POSTSUPERSCRIPT ( italic_x , italic_y )(1)
s.t.f(x,y)=0𝑓𝑥𝑦0\displaystyle f(x,y)=0italic_f ( italic_x , italic_y ) = 0
g(x,y)0𝑔𝑥𝑦0\displaystyle g(x,y)\leq 0italic_g ( italic_x , italic_y ) ≤ 0
xn,ymformulae-sequence𝑥superscript𝑛𝑦superscript𝑚\displaystyle x\in\mathbb{R}^{n},y\in\mathbb{R}^{m}italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_y ∈ blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT

The objective function is the present value of the system which is a sum of the cost of the electrolyzer stack, Cstacksuperscript𝐶𝑠𝑡𝑎𝑐𝑘C^{stack}italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_a italic_c italic_k end_POSTSUPERSCRIPT, the cost of \chH2 storage, Cstoragesuperscript𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒C^{storage}italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_o italic_r italic_a italic_g italic_e end_POSTSUPERSCRIPT, and the variable operating costs, CvOPEXsuperscript𝐶𝑣𝑂𝑃𝐸𝑋C^{vOPEX}italic_C start_POSTSUPERSCRIPT italic_v italic_O italic_P italic_E italic_X end_POSTSUPERSCRIPT, which are primarily the cost of electricity and deionized water. The decision variables can be separated into two classes, x𝑥xitalic_x which represents the decision variables related to electrolzyer and storage sizing, and y𝑦yitalic_y, representing the time-dependent operational variables calculated from the relations in f𝑓fitalic_f and constraints represented by g𝑔gitalic_g. A detailed description of the optimization problem is presented in the following sections.

2.3 Reformulated Model

Rather than solve a single monolithic non-convex optimization model which is computationally challenging, we apply a decomposition strategy similar to Roh et. al and Chung et. al [Roh2019-vj, Chung2024-vr]. This approach decouples the sizing of the electrolyzer (the outer problem) and the operational optimization given a fixed electrolyzer area and storage capacity (the inner problem) as illustrated in Figure 2 (explained in a later section).

2.3.1 Outer Problem

The outer problem iterates over the total number of cells in the electrolyzer set up, Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, and number of days of \chH2 storage Γ\chH2,storsubscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟\Gamma_{\ch{H2},stor}roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUBSCRIPT. Each cell is assumed to have an area of 450 cm2centimeter2absent\frac{{\mathrm{cm}}^{2}}{}divide start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG start_ARG end_ARG represented by Acellsubscript𝐴𝑐𝑒𝑙𝑙A_{cell}italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT. The cost of the stack and storage can then be calculated as

Cstacksuperscript𝐶𝑠𝑡𝑎𝑐𝑘\displaystyle C^{stack}italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_a italic_c italic_k end_POSTSUPERSCRIPT=NcAcellpstack+CmBoP+CeBoPabsentsubscript𝑁𝑐subscript𝐴𝑐𝑒𝑙𝑙superscript𝑝𝑠𝑡𝑎𝑐𝑘superscript𝐶𝑚𝐵𝑜𝑃superscript𝐶𝑒𝐵𝑜𝑃\displaystyle=N_{c}A_{cell}p^{stack}+C^{mBoP}+C^{eBoP}= italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_s italic_t italic_a italic_c italic_k end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_m italic_B italic_o italic_P end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_e italic_B italic_o italic_P end_POSTSUPERSCRIPT(2)
Cstoragesuperscript𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒\displaystyle C^{storage}italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_o italic_r italic_a italic_g italic_e end_POSTSUPERSCRIPT=Γ\chH2,storm˙\chH2pstorageabsentsubscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟subscript˙𝑚\ch𝐻2superscript𝑝𝑠𝑡𝑜𝑟𝑎𝑔𝑒\displaystyle=\Gamma_{\ch{H2},stor}\dot{m}_{\ch{H2}}p^{storage}= roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUBSCRIPT over˙ start_ARG italic_m end_ARG start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_s italic_t italic_o italic_r italic_a italic_g italic_e end_POSTSUPERSCRIPT(3)

where CmBoPsuperscript𝐶𝑚𝐵𝑜𝑃C^{mBoP}italic_C start_POSTSUPERSCRIPT italic_m italic_B italic_o italic_P end_POSTSUPERSCRIPT mechanical balance of plant capital cost, CeBoPsuperscript𝐶𝑒𝐵𝑜𝑃C^{eBoP}italic_C start_POSTSUPERSCRIPT italic_e italic_B italic_o italic_P end_POSTSUPERSCRIPT, electrical balance of plant capital cost, pstacksuperscript𝑝𝑠𝑡𝑎𝑐𝑘p^{stack}italic_p start_POSTSUPERSCRIPT italic_s italic_t italic_a italic_c italic_k end_POSTSUPERSCRIPT is the capital cost of the stack in $/cm2centimeter2absent\frac{{\mathrm{cm}}^{2}}{}divide start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG start_ARG end_ARG, m˙\chH2subscript˙𝑚\ch𝐻2\dot{m}_{\ch{H2}}over˙ start_ARG italic_m end_ARG start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT is the daily \chH2 production rate in kilograms as calculated by the inner problem, and pstoragesuperscript𝑝𝑠𝑡𝑜𝑟𝑎𝑔𝑒p^{storage}italic_p start_POSTSUPERSCRIPT italic_s italic_t italic_o italic_r italic_a italic_g italic_e end_POSTSUPERSCRIPT is the cost of storage in $/kgkilogramabsent\frac{\mathrm{kg}}{}divide start_ARG roman_kg end_ARG start_ARG end_ARG \chH2.

CmBoPsuperscript𝐶𝑚𝐵𝑜𝑃\displaystyle C^{mBoP}italic_C start_POSTSUPERSCRIPT italic_m italic_B italic_o italic_P end_POSTSUPERSCRIPT=αmBoPm˙\chH2absentsuperscript𝛼𝑚𝐵𝑜𝑃subscript˙𝑚\ch𝐻2\displaystyle=\alpha^{mBoP}\dot{m}_{\ch{H2}}= italic_α start_POSTSUPERSCRIPT italic_m italic_B italic_o italic_P end_POSTSUPERSCRIPT over˙ start_ARG italic_m end_ARG start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT(4)
CeBoPsuperscript𝐶𝑒𝐵𝑜𝑃\displaystyle C^{eBoP}italic_C start_POSTSUPERSCRIPT italic_e italic_B italic_o italic_P end_POSTSUPERSCRIPT=αeBoPPmaxabsentsuperscript𝛼𝑒𝐵𝑜𝑃superscript𝑃𝑚𝑎𝑥\displaystyle=\alpha^{eBoP}P^{max}= italic_α start_POSTSUPERSCRIPT italic_e italic_B italic_o italic_P end_POSTSUPERSCRIPT italic_P start_POSTSUPERSCRIPT italic_m italic_a italic_x end_POSTSUPERSCRIPT(5)

The mechanical and electrical balance of plant are scaled based on the rate of \chH2 production and peak power consumption for the facility, as shown in Equations 4 and 5. The mechanical balance of plant represents the compressors, pumps, DI water system, and \chH2 separation system while the electrical balance of plant includes all electrical components necessary to make the interconnection to the grid including a rectifier. Here, αmBoPsuperscript𝛼𝑚𝐵𝑜𝑃\alpha^{mBoP}italic_α start_POSTSUPERSCRIPT italic_m italic_B italic_o italic_P end_POSTSUPERSCRIPT is a cost factor in $/kgkilogramabsent\frac{\mathrm{kg}}{}divide start_ARG roman_kg end_ARG start_ARG end_ARG \chH2, αeBoPsuperscript𝛼𝑒𝐵𝑜𝑃\alpha^{eBoP}italic_α start_POSTSUPERSCRIPT italic_e italic_B italic_o italic_P end_POSTSUPERSCRIPT is a cost factor in $/kWkilowattabsent\frac{\mathrm{kW}}{}divide start_ARG roman_kW end_ARG start_ARG end_ARGe, and Pmaxsuperscript𝑃𝑚𝑎𝑥P^{max}italic_P start_POSTSUPERSCRIPT italic_m italic_a italic_x end_POSTSUPERSCRIPT is peak power consumption of the system in kWkilowattabsent\frac{\mathrm{kW}}{}divide start_ARG roman_kW end_ARG start_ARG end_ARGe as calculated by the inner problem. Pmaxsubscript𝑃𝑚𝑎𝑥P_{max}italic_P start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT is then a parameter passed to the outer problem to calculate the CAPEX for a given outer problem iteration.

2.3.2 Inner Problem

The inner problem takes a fixed Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and Γ\chH2,storsubscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟\Gamma_{\ch{H2},stor}roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUBSCRIPT and minimizes operating cost while meeting the daily production target of 50,000kgd50000kilogramday50,000$\frac{\mathrm{kg}}{\mathrm{d}}$50 , 000 divide start_ARG roman_kg end_ARG start_ARG roman_d end_ARG. The inner problem can be written as a minimization of the operating cost as defined in Equation 6.

min𝐱subscript𝐱\displaystyle\min_{\bf{x}}roman_min start_POSTSUBSCRIPT bold_x end_POSTSUBSCRIPTCvOPEX=Celec+CBoP,elec+Cwater+C\chN2superscript𝐶𝑣𝑂𝑃𝐸𝑋superscript𝐶𝑒𝑙𝑒𝑐superscript𝐶𝐵𝑜𝑃𝑒𝑙𝑒𝑐superscript𝐶𝑤𝑎𝑡𝑒𝑟superscript𝐶\ch𝑁2\displaystyle C^{vOPEX}=C^{elec}+C^{BoP,\>elec}+C^{water}+C^{\ch{N2}}italic_C start_POSTSUPERSCRIPT italic_v italic_O italic_P italic_E italic_X end_POSTSUPERSCRIPT = italic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_B italic_o italic_P , italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_w italic_a italic_t italic_e italic_r end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_N 2 end_POSTSUPERSCRIPT(6)
s.t.electrochemical model, Equations S1 -S12
mass balances, Equations S13-S26
energy balance, Equations S27 - S31
\chH2 storage constraints, Equation 17-22
m˙\chH250,000kgdsubscript˙𝑚\ch𝐻250000kilogramday\displaystyle\dot{m}_{\ch{H2}}\geq 50,000$\frac{\mathrm{kg}}{\mathrm{d}}$over˙ start_ARG italic_m end_ARG start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT ≥ 50 , 000 divide start_ARG roman_kg end_ARG start_ARG roman_d end_ARG
60CT80Csuperscript60C𝑇superscript80C\displaystyle 60^{\circ}\text{C}\leq T\leq 80^{\circ}\text{C}60 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT C ≤ italic_T ≤ 80 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT C
0.1Acm2i4Acm20.1amperecentimeter2𝑖4amperecentimeter2\displaystyle 0.1$\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}$\leq i\leq 4$\frac{%\mathrm{A}}{{\mathrm{cm}}^{2}}$0.1 divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG ≤ italic_i ≤ 4 divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG
y\chH2,anode0.02subscript𝑦\ch𝐻2𝑎𝑛𝑜𝑑𝑒0.02\displaystyle y_{\ch{H2},anode}\leq 0.02italic_y start_POSTSUBSCRIPT italic_H 2 , italic_a italic_n italic_o italic_d italic_e end_POSTSUBSCRIPT ≤ 0.02

where x represents the primary decision variables, Celecsuperscript𝐶𝑒𝑙𝑒𝑐C^{elec}italic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT is the annual cost of electricity used by the electrolyzer, CBoP,elecsuperscript𝐶𝐵𝑜𝑃𝑒𝑙𝑒𝑐C^{BoP,elec}italic_C start_POSTSUPERSCRIPT italic_B italic_o italic_P , italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT is the annual cost of electricity consumed by the balance of plant, Cwatersuperscript𝐶𝑤𝑎𝑡𝑒𝑟C^{water}italic_C start_POSTSUPERSCRIPT italic_w italic_a italic_t italic_e italic_r end_POSTSUPERSCRIPT is the annual cost of the deionized water, and C\chN2superscript𝐶\ch𝑁2C^{\ch{N2}}italic_C start_POSTSUPERSCRIPT italic_N 2 end_POSTSUPERSCRIPT is the annual cost of the nitrogen gas used at the anode for purging.

The model is subject to the mass and energy balances outlined in the SI as well as a demand constraint of 50,000 kgdkilogramday\frac{\mathrm{kg}}{\mathrm{d}}divide start_ARG roman_kg end_ARG start_ARG roman_d end_ARG of \chH2. An operating temperature range of 60superscript6060^{\circ}60 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPTC - 80superscript8080^{\circ}80 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPTC was imposed on the stack. Additionally, a minimum and maximum current density were applied in this study. The minimum current density was chosen based on minimizing degradation at low voltages and the high current density was chosen based on the limit of commercialized PEM today [Weis2019-vj]. In order to ensure 4% \chH2 in \chO2 at the anode is never reached a safety factor of 2 was applied making another constraint of a maximum of 2% \chH2 in \chO2 at the anode.

Evaluating each variable in the system for 15 minute time periods over the course of a year quickly becomes computationally intractable. To maintain computational tractability, we approximate annual operating costs through modeling operation over representative days at 15 min resolution assuming the hourly price of electricity holds for the entire hour. Time domain reduction using k-means clustering was performed for each electricity price time series data in order to find 7 representative days. Further details of the clustering method can be found in SI 5.2.

The clustering created a mapping f:dr:𝑓𝑑𝑟f:d\rightarrow ritalic_f : italic_d → italic_r. Each real day, d𝑑ditalic_d, is mapped to a representative day, r𝑟ritalic_r. To distinguish between variables for real or representative days, any variable with a bar above it is a variable that is indexed by the set of representative days.

Beginning with the cost of electricity for the electrolyzer,

Celecsuperscript𝐶𝑒𝑙𝑒𝑐\displaystyle C^{elec}italic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT=d=1365Cdelecabsentsuperscriptsubscript𝑑1365subscriptsuperscript𝐶𝑒𝑙𝑒𝑐𝑑\displaystyle=\sum_{d=1}^{365}C^{elec}_{d}= ∑ start_POSTSUBSCRIPT italic_d = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 365 end_POSTSUPERSCRIPT italic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT(7)
Cdelecsubscriptsuperscript𝐶𝑒𝑙𝑒𝑐𝑑\displaystyle C^{elec}_{d}italic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT=0τpdelec(t)id(t)A(Vdundeg(t)+Vddeg,cuml(t))𝑑tabsentsuperscriptsubscript0𝜏subscriptsuperscript𝑝𝑒𝑙𝑒𝑐𝑑𝑡subscript𝑖𝑑𝑡𝐴subscriptsuperscript𝑉𝑢𝑛𝑑𝑒𝑔𝑑𝑡subscriptsuperscript𝑉𝑑𝑒𝑔𝑐𝑢𝑚𝑙𝑑𝑡differential-d𝑡\displaystyle=\int_{0}^{\tau}p^{elec}_{d}(t)i_{d}(t)A\left(V^{undeg}_{d}(t)+V^%{deg,cuml}_{d}(t)\right)\>dt= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT italic_p start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_t ) italic_i start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_t ) italic_A ( italic_V start_POSTSUPERSCRIPT italic_u italic_n italic_d italic_e italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_t ) + italic_V start_POSTSUPERSCRIPT italic_d italic_e italic_g , italic_c italic_u italic_m italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_t ) ) italic_d italic_t(8)

where τ𝜏\tauitalic_τ represents the end of a representative day, pelecsuperscript𝑝𝑒𝑙𝑒𝑐p^{elec}italic_p start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT represents the price of electricity, i𝑖iitalic_i is the current density, A=NcAcell𝐴subscript𝑁𝑐subscript𝐴𝑐𝑒𝑙𝑙A=N_{c}A_{cell}italic_A = italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT is the total electrolyzer area, Vundegsuperscript𝑉𝑢𝑛𝑑𝑒𝑔V^{undeg}italic_V start_POSTSUPERSCRIPT italic_u italic_n italic_d italic_e italic_g end_POSTSUPERSCRIPT is the voltage without considering degradation (based on polarization curve - see Equations S1 -S12), and Vdeg,cumlsuperscript𝑉𝑑𝑒𝑔𝑐𝑢𝑚𝑙V^{deg,cuml}italic_V start_POSTSUPERSCRIPT italic_d italic_e italic_g , italic_c italic_u italic_m italic_l end_POSTSUPERSCRIPT is the cumulative increase in voltage due to degradation.

The first term in the integral can be mapped to its respective representative day via f(d)r𝑓𝑑𝑟f(d)\rightarrow ritalic_f ( italic_d ) → italic_r. However, the second term that accounts for the cumulative degradation that changes over the 365 day range and is inter-temporally coupled. So Cdelecsubscriptsuperscript𝐶𝑒𝑙𝑒𝑐𝑑C^{elec}_{d}italic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT becomes:

Cdelec=0τpf(d)elec(t)if(d)(t)A(Vf(d)undeg(t)+Vddeg,cuml(t))𝑑tsubscriptsuperscript𝐶𝑒𝑙𝑒𝑐𝑑superscriptsubscript0𝜏subscriptsuperscript𝑝𝑒𝑙𝑒𝑐𝑓𝑑𝑡subscript𝑖𝑓𝑑𝑡𝐴subscriptsuperscript𝑉𝑢𝑛𝑑𝑒𝑔𝑓𝑑𝑡subscriptsuperscript𝑉𝑑𝑒𝑔𝑐𝑢𝑚𝑙𝑑𝑡differential-d𝑡C^{elec}_{d}=\int_{0}^{\tau}p^{elec}_{f(d)}(t)i_{f(d)}(t)A\left(V^{undeg}_{f(d%)}(t)+V^{deg,cuml}_{d}(t)\right)\>dtitalic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT italic_p start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_f ( italic_d ) end_POSTSUBSCRIPT ( italic_t ) italic_i start_POSTSUBSCRIPT italic_f ( italic_d ) end_POSTSUBSCRIPT ( italic_t ) italic_A ( italic_V start_POSTSUPERSCRIPT italic_u italic_n italic_d italic_e italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_f ( italic_d ) end_POSTSUBSCRIPT ( italic_t ) + italic_V start_POSTSUPERSCRIPT italic_d italic_e italic_g , italic_c italic_u italic_m italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_t ) ) italic_d italic_t(9)

In accordance with the degradation correlation based on experiential literature values seen in Figure 4, we use the following model to represent the change in degradation over a representative day r𝑟ritalic_r:

dV¯deg,rdt={ai¯r1a[i¯r(t)]2i¯r>1𝑑subscript¯𝑉𝑑𝑒𝑔𝑟𝑑𝑡cases𝑎subscript¯𝑖𝑟1𝑎superscriptdelimited-[]subscript¯𝑖𝑟𝑡2subscript¯𝑖𝑟1\frac{d\bar{V}_{deg,r}}{dt}=\begin{cases}a\quad&\bar{i}_{r}\leq 1\\a\left[\bar{i}_{r}(t)\right]^{2}\quad&\bar{i}_{r}>1\end{cases}divide start_ARG italic_d over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_d italic_e italic_g , italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG = { start_ROW start_CELL italic_a end_CELL start_CELL over¯ start_ARG italic_i end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ≤ 1 end_CELL end_ROW start_ROW start_CELL italic_a [ over¯ start_ARG italic_i end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL over¯ start_ARG italic_i end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT > 1 end_CELL end_ROW(10)

Cumulative degradation for real day d𝑑ditalic_d can then be written as

Vddeg,cuml(t)=Vd1deg,cuml(t)+δV¯f(d)deg(t)superscriptsubscript𝑉𝑑𝑑𝑒𝑔𝑐𝑢𝑚𝑙𝑡superscriptsubscript𝑉𝑑1𝑑𝑒𝑔𝑐𝑢𝑚𝑙𝑡𝛿superscriptsubscript¯𝑉𝑓𝑑𝑑𝑒𝑔𝑡V_{d}^{deg,cuml}(t)=V_{d-1}^{deg,cuml}(t)+\delta\bar{V}_{f(d)}^{deg}(t)italic_V start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d italic_e italic_g , italic_c italic_u italic_m italic_l end_POSTSUPERSCRIPT ( italic_t ) = italic_V start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d italic_e italic_g , italic_c italic_u italic_m italic_l end_POSTSUPERSCRIPT ( italic_t ) + italic_δ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_f ( italic_d ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d italic_e italic_g end_POSTSUPERSCRIPT ( italic_t )(11)

where δV¯deg,f(d)(t)𝛿subscript¯𝑉𝑑𝑒𝑔𝑓𝑑𝑡\delta\bar{V}_{deg,f(d)}(t)italic_δ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_d italic_e italic_g , italic_f ( italic_d ) end_POSTSUBSCRIPT ( italic_t ) comes from solving the differential equation in Equation 10 up to the time point of interest. Initial degradation at the beginning of the year for a fresh stack is assumed to be 0 Vvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG.

Using the mapping f(d)r𝑓𝑑𝑟f(d)\rightarrow ritalic_f ( italic_d ) → italic_r, Cdelecsubscriptsuperscript𝐶𝑒𝑙𝑒𝑐𝑑C^{elec}_{d}italic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT can be written

Cdelec=0τp¯relec(t)i¯r(t)A(V¯rundeg(t)+Vd1deg,cuml(t)+δV¯rdeg(t))𝑑tsubscriptsuperscript𝐶𝑒𝑙𝑒𝑐𝑑superscriptsubscript0𝜏subscriptsuperscript¯𝑝𝑒𝑙𝑒𝑐𝑟𝑡subscript¯𝑖𝑟𝑡𝐴subscriptsuperscript¯𝑉𝑢𝑛𝑑𝑒𝑔𝑟𝑡superscriptsubscript𝑉𝑑1𝑑𝑒𝑔𝑐𝑢𝑚𝑙𝑡𝛿superscriptsubscript¯𝑉𝑟𝑑𝑒𝑔𝑡differential-d𝑡C^{elec}_{d}=\int_{0}^{\tau}\bar{p}^{elec}_{r}(t)\bar{i}_{r}(t)A\left(\bar{V}^%{undeg}_{r}(t)+V_{d-1}^{deg,cuml}(t)+\delta\bar{V}_{r}^{deg}(t)\right)\>dtitalic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT over¯ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) over¯ start_ARG italic_i end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) italic_A ( over¯ start_ARG italic_V end_ARG start_POSTSUPERSCRIPT italic_u italic_n italic_d italic_e italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) + italic_V start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d italic_e italic_g , italic_c italic_u italic_m italic_l end_POSTSUPERSCRIPT ( italic_t ) + italic_δ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d italic_e italic_g end_POSTSUPERSCRIPT ( italic_t ) ) italic_d italic_t(12)

The annual cost of electricity is then written:

Celec=r=17wr0τp¯relec(t)i¯r(t)A(V¯rundeg(t)+δV¯rdeg)𝑑t+d=13650τp¯relec(t)i¯r(t)AVd1deg,cuml(t)𝑑tsuperscript𝐶𝑒𝑙𝑒𝑐superscriptsubscript𝑟17subscript𝑤𝑟superscriptsubscript0𝜏subscriptsuperscript¯𝑝𝑒𝑙𝑒𝑐𝑟𝑡subscript¯𝑖𝑟𝑡𝐴subscriptsuperscript¯𝑉𝑢𝑛𝑑𝑒𝑔𝑟𝑡𝛿superscriptsubscript¯𝑉𝑟𝑑𝑒𝑔differential-d𝑡superscriptsubscript𝑑1365superscriptsubscript0𝜏subscriptsuperscript¯𝑝𝑒𝑙𝑒𝑐𝑟𝑡subscript¯𝑖𝑟𝑡𝐴superscriptsubscript𝑉𝑑1𝑑𝑒𝑔𝑐𝑢𝑚𝑙𝑡differential-d𝑡C^{elec}=\sum_{r=1}^{7}w_{r}\int_{0}^{\tau}\bar{p}^{elec}_{r}(t)\bar{i}_{r}(t)%A\left(\bar{V}^{undeg}_{r}(t)+\delta\bar{V}_{r}^{deg}\right)\>dt+\sum_{d=1}^{3%65}\int_{0}^{\tau}\bar{p}^{elec}_{r}(t)\bar{i}_{r}(t)AV_{d-1}^{deg,cuml}(t)\>dtitalic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT italic_w start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT over¯ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) over¯ start_ARG italic_i end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) italic_A ( over¯ start_ARG italic_V end_ARG start_POSTSUPERSCRIPT italic_u italic_n italic_d italic_e italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) + italic_δ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d italic_e italic_g end_POSTSUPERSCRIPT ) italic_d italic_t + ∑ start_POSTSUBSCRIPT italic_d = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 365 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT over¯ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) over¯ start_ARG italic_i end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) italic_A italic_V start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d italic_e italic_g , italic_c italic_u italic_m italic_l end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_t(13)

where wrsubscript𝑤𝑟w_{r}italic_w start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT represents the weight of representative day r𝑟ritalic_r as determined by the clustering.

CBoP,elecsuperscript𝐶𝐵𝑜𝑃𝑒𝑙𝑒𝑐C^{BoP,elec}italic_C start_POSTSUPERSCRIPT italic_B italic_o italic_P , italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT, Cwatersuperscript𝐶𝑤𝑎𝑡𝑒𝑟C^{water}italic_C start_POSTSUPERSCRIPT italic_w italic_a italic_t italic_e italic_r end_POSTSUPERSCRIPT, and C\chN2superscript𝐶\ch𝑁2C^{\ch{N2}}italic_C start_POSTSUPERSCRIPT italic_N 2 end_POSTSUPERSCRIPT can be calculated in a similar manner using the associated representative days and mapping f𝑓fitalic_f.

CBoP,elecsuperscript𝐶𝐵𝑜𝑃𝑒𝑙𝑒𝑐\displaystyle C^{BoP,elec}italic_C start_POSTSUPERSCRIPT italic_B italic_o italic_P , italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT=r=17wr0τ[αmBoPm˙\chH2,rp¯relec(t)+Wcompressp¯relec(t)]𝑑tabsentsuperscriptsubscript𝑟17subscript𝑤𝑟superscriptsubscript0𝜏delimited-[]superscript𝛼𝑚𝐵𝑜𝑃subscript˙𝑚\ch𝐻2𝑟subscriptsuperscript¯𝑝𝑒𝑙𝑒𝑐𝑟𝑡superscript𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠subscriptsuperscript¯𝑝𝑒𝑙𝑒𝑐𝑟𝑡differential-d𝑡\displaystyle=\sum_{r=1}^{7}w_{r}\int_{0}^{\tau}\left[\alpha^{mBoP}\dot{m}_{%\ch{H2},r}\bar{p}^{elec}_{r}(t)+W^{compress}\bar{p}^{elec}_{r}(t)\right]dt= ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT italic_w start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT [ italic_α start_POSTSUPERSCRIPT italic_m italic_B italic_o italic_P end_POSTSUPERSCRIPT over˙ start_ARG italic_m end_ARG start_POSTSUBSCRIPT italic_H 2 , italic_r end_POSTSUBSCRIPT over¯ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) + italic_W start_POSTSUPERSCRIPT italic_c italic_o italic_m italic_p italic_r italic_e italic_s italic_s end_POSTSUPERSCRIPT over¯ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) ] italic_d italic_t(14)
Cwatersuperscript𝐶𝑤𝑎𝑡𝑒𝑟\displaystyle C^{water}italic_C start_POSTSUPERSCRIPT italic_w italic_a italic_t italic_e italic_r end_POSTSUPERSCRIPT=r=17wr0τ[n˙\chH2O,consum,r+n˙\chH2O,vap,5,r+n˙\chH2O,vap,6,r]pwater𝑑tabsentsuperscriptsubscript𝑟17subscript𝑤𝑟superscriptsubscript0𝜏delimited-[]subscript˙𝑛\ch𝐻2𝑂𝑐𝑜𝑛𝑠𝑢𝑚𝑟subscript˙𝑛\ch𝐻2𝑂𝑣𝑎𝑝5𝑟subscript˙𝑛\ch𝐻2𝑂𝑣𝑎𝑝6𝑟superscript𝑝𝑤𝑎𝑡𝑒𝑟differential-d𝑡\displaystyle=\sum_{r=1}^{7}w_{r}\int_{0}^{\tau}\left[\dot{n}_{\ch{H2O},consum%,r}+\dot{n}_{\ch{H2O},vap,5,r}+\dot{n}_{\ch{H2O},vap,6,r}\right]p^{water}dt= ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT italic_w start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT [ over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H 2 italic_O , italic_c italic_o italic_n italic_s italic_u italic_m , italic_r end_POSTSUBSCRIPT + over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H 2 italic_O , italic_v italic_a italic_p , 5 , italic_r end_POSTSUBSCRIPT + over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H 2 italic_O , italic_v italic_a italic_p , 6 , italic_r end_POSTSUBSCRIPT ] italic_p start_POSTSUPERSCRIPT italic_w italic_a italic_t italic_e italic_r end_POSTSUPERSCRIPT italic_d italic_t(15)
C\chN2superscript𝐶\ch𝑁2\displaystyle C^{\ch{N2}}italic_C start_POSTSUPERSCRIPT italic_N 2 end_POSTSUPERSCRIPT=r=17wr0τn˙\chN2,11,rp\chN2𝑑tabsentsuperscriptsubscript𝑟17subscript𝑤𝑟superscriptsubscript0𝜏subscript˙𝑛\ch𝑁211𝑟superscript𝑝\ch𝑁2differential-d𝑡\displaystyle=\sum_{r=1}^{7}w_{r}\int_{0}^{\tau}\dot{n}_{\ch{N2},11,r}p^{\ch{N%2}}dt= ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT italic_w start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_N 2 , 11 , italic_r end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_N 2 end_POSTSUPERSCRIPT italic_d italic_t(16)

where Wcompresssuperscript𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠W^{compress}italic_W start_POSTSUPERSCRIPT italic_c italic_o italic_m italic_p italic_r italic_e italic_s italic_s end_POSTSUPERSCRIPT is the work of the \chH2 storage compressor, pwatersuperscript𝑝𝑤𝑎𝑡𝑒𝑟p^{water}italic_p start_POSTSUPERSCRIPT italic_w italic_a italic_t italic_e italic_r end_POSTSUPERSCRIPT is the price of deionized water, and p\chN2superscript𝑝\ch𝑁2p^{\ch{N2}}italic_p start_POSTSUPERSCRIPT italic_N 2 end_POSTSUPERSCRIPT is the price of nitrogen. Compressor work is evaluated using a single stage isentropic compression with an isentropic factor of 0.7 as outlined in Kahn et. al and Chung et. al [Chung2024-vr, Kahn2021-jv].

2.3.3 H2 Storage

\ch

H2 storage is necessary to enable meeting base load \chH2 demand with flexible electrolyzer operation. We model the state of charge variation in \chH2 storage considering both the short-term (intra-day) and long-term (inter-day) changes resulting from hour-to-hour discharging/charging activity. Following the method of Narayanan et. al [Narayanan2022-uj] and Kotzur et. al [Kotzur2018-rx], the storage state of charge variation throughout the year is approximated as as a super-position of: a) inter-day state of charge variations modeled over all days of the year and b) intra-day state of charge variations modeled only for the representative days. This approach enables us to respect inter-temporally coupled nature of energy storage operations without the need to model all time periods of the year.

Long duration storage as well as intra-day storage are formulated as follows:

δrsubscript𝛿𝑟\displaystyle\delta_{r}italic_δ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT=Λ¯r\chH2,stor(τ)Λ¯r\chH2,stor(0)absentsubscriptsuperscript¯Λ\ch𝐻2𝑠𝑡𝑜𝑟𝑟𝜏subscriptsuperscript¯Λ\ch𝐻2𝑠𝑡𝑜𝑟𝑟0\displaystyle=\bar{\Lambda}^{\ch{H2},stor}_{r}(\tau)-\bar{\Lambda}^{\ch{H2},%stor}_{r}(0)\quad= over¯ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_τ ) - over¯ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( 0 )rDrfor-all𝑟subscript𝐷𝑟\displaystyle\forall r\in D_{r}∀ italic_r ∈ italic_D start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT(17)
Λ1\chH2,stor(0)subscriptsuperscriptΛ\ch𝐻2𝑠𝑡𝑜𝑟10\displaystyle\Lambda^{\ch{H2},stor}_{1}(0)roman_Λ start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 0 )=Λ365\chH2,stor(τ)+δf(365)absentsubscriptsuperscriptΛ\ch𝐻2𝑠𝑡𝑜𝑟365𝜏subscript𝛿𝑓365\displaystyle=\Lambda^{\ch{H2},stor}_{365}(\tau)+\delta_{f(365)}= roman_Λ start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 365 end_POSTSUBSCRIPT ( italic_τ ) + italic_δ start_POSTSUBSCRIPT italic_f ( 365 ) end_POSTSUBSCRIPT(18)
Λd+1\chH2,stor(0)subscriptsuperscriptΛ\ch𝐻2𝑠𝑡𝑜𝑟𝑑10\displaystyle\Lambda^{\ch{H2},stor}_{d+1}(0)roman_Λ start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d + 1 end_POSTSUBSCRIPT ( 0 )=Λd\chH2,stor(0)+δf(d)absentsubscriptsuperscriptΛ\ch𝐻2𝑠𝑡𝑜𝑟𝑑0subscript𝛿𝑓𝑑\displaystyle=\Lambda^{\ch{H2},stor}_{d}(0)+\delta_{f(d)}= roman_Λ start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( 0 ) + italic_δ start_POSTSUBSCRIPT italic_f ( italic_d ) end_POSTSUBSCRIPT(19)
Λd\chH2,stor(0)subscriptsuperscriptΛ\ch𝐻2𝑠𝑡𝑜𝑟𝑑0\displaystyle\Lambda^{\ch{H2},stor}_{d}(0)roman_Λ start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( 0 )=Λ¯r\chH2,stor(τ)δf(d)absentsubscriptsuperscript¯Λ\ch𝐻2𝑠𝑡𝑜𝑟𝑟𝜏subscript𝛿𝑓𝑑\displaystyle=\bar{\Lambda}^{\ch{H2},stor}_{r}(\tau)-\delta_{f(d)}\quad= over¯ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_τ ) - italic_δ start_POSTSUBSCRIPT italic_f ( italic_d ) end_POSTSUBSCRIPTdDfor-all𝑑𝐷\displaystyle\forall d\in D∀ italic_d ∈ italic_D(20)
dΛd\chH2,stordt𝑑subscriptsuperscriptΛ\ch𝐻2𝑠𝑡𝑜𝑟𝑑𝑑𝑡\displaystyle\frac{d\Lambda^{\ch{H2},stor}_{d}}{dt}divide start_ARG italic_d roman_Λ start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG=n˙15,f(d)(t)n˙16,f(d)(t)absentsubscript˙𝑛15𝑓𝑑𝑡subscript˙𝑛16𝑓𝑑𝑡\displaystyle=\dot{n}_{15,f(d)}(t)-\dot{n}_{16,f(d)}(t)= over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 15 , italic_f ( italic_d ) end_POSTSUBSCRIPT ( italic_t ) - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 16 , italic_f ( italic_d ) end_POSTSUBSCRIPT ( italic_t )(21)
dΛ¯r\chH2,stordt𝑑subscriptsuperscript¯Λ\ch𝐻2𝑠𝑡𝑜𝑟𝑟𝑑𝑡\displaystyle\frac{d\bar{\Lambda}^{\ch{H2},stor}_{r}}{dt}divide start_ARG italic_d over¯ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG=n˙15,r(t)n˙16,r(t)absentsubscript˙𝑛15𝑟𝑡subscript˙𝑛16𝑟𝑡\displaystyle=\dot{n}_{15,r}(t)-\dot{n}_{16,r}(t)= over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 15 , italic_r end_POSTSUBSCRIPT ( italic_t ) - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 16 , italic_r end_POSTSUBSCRIPT ( italic_t )(22)
Γ\chH2,storm˙\chH2subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟subscript˙𝑚\ch𝐻2\displaystyle\Gamma_{\ch{H2},stor}\dot{m}_{\ch{H2}}roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUBSCRIPT over˙ start_ARG italic_m end_ARG start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPTmax(Λ¯r\chH2,stor,Λd\chH2,stor)absentsubscriptsuperscript¯Λ\ch𝐻2𝑠𝑡𝑜𝑟𝑟subscriptsuperscriptΛ\ch𝐻2𝑠𝑡𝑜𝑟𝑑\displaystyle\geq\max\left(\bar{\Lambda}^{\ch{H2},stor}_{r},\Lambda^{\ch{H2},%stor}_{d}\right)≥ roman_max ( over¯ start_ARG roman_Λ end_ARG start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , roman_Λ start_POSTSUPERSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT )(23)

where δrsubscript𝛿𝑟\delta_{r}italic_δ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is the positive or negative change in storage levels that occurs over representative day r𝑟ritalic_r and allows for \chH2 storage to carry over between representative periods. Equation 18 represents a wrapping constraint between the last day in the year and the first day in the year. Equation 19 allows \chH2 storage to carry over between real days. Equation 20 relates the beginning of a real day of storage to the associated beginning of the representative day. Equations 21 - 22 ensure the mass balance across the \chH2 storage is closed over real and representative days. Finally, Equation 23 ensures all storage state of charge variables are less than the maximum amount of \chH2 storage. A visual representation of the storage formulation is included in the SI in Figure S1.

2.3.4 Implementation Approach

The outer and inner problems can be combined in an iterative manner using the algorithm described in Figure 2.

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (2)

Upper and lower bounds for the electrolyzer area and number of days of \chH2 storage are chosen based on physical limits of the electrolyzer in order to satisfy the 50,000 kgdkilogramday\frac{\mathrm{kg}}{\mathrm{d}}divide start_ARG roman_kg end_ARG start_ARG roman_d end_ARG \chH2 demand. For this study, an area range of 40,000300,0004000030000040,000-300,00040 , 000 - 300 , 000 450 cm2centimeter2absent\frac{{\mathrm{cm}}^{2}}{}divide start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG start_ARG end_ARG cells and a storage range of 0.1140.1140.1-140.1 - 14 days were chosen where one day of storage is equivalent to 50,000 kgkilogramabsent\frac{\mathrm{kg}}{}divide start_ARG roman_kg end_ARG start_ARG end_ARG of \chH2. From the GSS algorithm two trial areas and two trial storages are chosen as is done by Sandhya et al assuming unimodality in each of the search directions [Sandhya-Rani2019-pw]. This creates a total of four trial points in this 2D search space. The operational optimization is run for those 4 trial points which results in four different variable operating costs. For the PEM system, in the limit of very large electrolyzer areas, high capital costs would result in a high present value. In the limit of small areas, the system would need to operate at high current densities which would result in more stack replacement and a high present value. Storage also exhibits a similar unimodal trend at the extremes.

With the size of each system and the variable operating cost estimated, the present value for each of the four trial points can be calculated. If the trial areas and number of storage days are within the user defined tolerance (0.1% in this study), then the algorithm terminates and the final solution corresponds to the solution of trial point problems with the lowest present value. The variable operating routine from the associated minimum present value is then the optimal operation routine and the area and number of days of storage from the minimum present value are the optimal sizing of the system.

If still outside the tolerance, regions in the 2D space where the minimum cannot lie are eliminated. For example, for A𝐴Aitalic_A and Γ\chH2,storsubscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟\Gamma_{\ch{H2},stor}roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUBSCRIPT where AlbAAubsubscript𝐴𝑙𝑏𝐴subscript𝐴𝑢𝑏A_{lb}\leq A\leq A_{ub}italic_A start_POSTSUBSCRIPT italic_l italic_b end_POSTSUBSCRIPT ≤ italic_A ≤ italic_A start_POSTSUBSCRIPT italic_u italic_b end_POSTSUBSCRIPT and Γ\chH2,stor,lbΓ\chH2,storΓ\chH2,stor,ubsubscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟𝑙𝑏subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟𝑢𝑏\Gamma_{\ch{H2},stor,lb}\leq\Gamma_{\ch{H2},stor}\leq\Gamma_{\ch{H2},stor,ub}roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , italic_l italic_b end_POSTSUBSCRIPT ≤ roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUBSCRIPT ≤ roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , italic_u italic_b end_POSTSUBSCRIPT and given four present values that are functions of the two trial areas and two trial storages PVA(A1,Γ\chH2,stor,1),PVB(A2,Γ\chH2,stor,1),PVC(A1,Γ\chH2,stor,2),PVD(A2,Γ\chH2,stor,2)𝑃subscript𝑉𝐴subscript𝐴1subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟1𝑃subscript𝑉𝐵subscript𝐴2subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟1𝑃subscript𝑉𝐶subscript𝐴1subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟2𝑃subscript𝑉𝐷subscript𝐴2subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟2PV_{A}(A_{1},\Gamma_{\ch{H2},stor,1}),PV_{B}(A_{2},\Gamma_{\ch{H2},stor,1}),PV%_{C}(A_{1},\Gamma_{\ch{H2},stor,2}),PV_{D}(A_{2},\Gamma_{\ch{H2},stor,2})italic_P italic_V start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , 1 end_POSTSUBSCRIPT ) , italic_P italic_V start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , 1 end_POSTSUBSCRIPT ) , italic_P italic_V start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , 2 end_POSTSUBSCRIPT ) , italic_P italic_V start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , 2 end_POSTSUBSCRIPT ), we can eliminate a portion of the search region by finding the minimum of the present values. If PVA𝑃subscript𝑉𝐴PV_{A}italic_P italic_V start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT is the smallest present value, we know the minimum will not lie in A2AAubsubscript𝐴2𝐴subscript𝐴𝑢𝑏A_{2}\leq A\leq A_{ub}italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≤ italic_A ≤ italic_A start_POSTSUBSCRIPT italic_u italic_b end_POSTSUBSCRIPT and Γ\chH2,stor,2Γ\chH2,storΓ\chH2,stor,ubsubscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟2subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟𝑢𝑏\Gamma_{\ch{H2},stor,2}\leq\Gamma_{\ch{H2},stor}\leq\Gamma_{\ch{H2},stor,ub}roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , 2 end_POSTSUBSCRIPT ≤ roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r end_POSTSUBSCRIPT ≤ roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , italic_u italic_b end_POSTSUBSCRIPT. Thus A2subscript𝐴2A_{2}italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Γ\chH2,stor,2subscriptΓ\ch𝐻2𝑠𝑡𝑜𝑟2\Gamma_{\ch{H2},stor,2}roman_Γ start_POSTSUBSCRIPT italic_H 2 , italic_s italic_t italic_o italic_r , 2 end_POSTSUBSCRIPT become the new upper bounds. Similar eliminations can be made if the smallest present value is one of the other three values. The algorithm repeats until converged on a locally optimal solution. Due to the non-linearity of the problem, a global optimum is not guaranteed.

The NLP to solve the operational problem was implemented in Python using Pyomo, specifically Pyomo DAE with IPOPT as the non-linear solver [Nicholson2018-mw, Wachter2006-la]. Linear solver MA86 was chosen to use in IPOPT for its ability to handle large problems well [UnknownUnknown-hg]. The bilevel optimization approach with the degradation correlation results in a problem with 200,000absent200000\approx 200,000≈ 200 , 000 continuous variables, 200,000absent200000\approx 200,000≈ 200 , 000 equality constraints, and 2,500absent2500\approx 2,500≈ 2 , 500 inequality constraints. Full details of each run can be found in Table 2 and in the SI in Table S4. The problem was run using resources on MIT’s SuperCloud HPC [Reuther2018-xn].

Table S5 shows how the bi-level optimization approach scales with the number of representative days. As we increase the number of representative days we expect convergence to a value for storage, number of cells, and LCOH, although this will not be monotonic due to the different effect of each added day to the optimization. Although increasing number of representative days allows for capturing greater day-to-day variability in the underlying electricity price time series, it increases the overall problem size and the computational burden as indicated by the time to convergence and avg. run time per GSS iteration. We choose 7 representative days to strike a balance between computational tractability and accuracy.

2.4 Data Inputs

2.4.1 Techno-economic Data

For the 2022 case, capital and operating cost assumptions were made consistent with the 2019 version of NREL’s H2A model adjusting for inflation from 2019 to 2022 [Brian_D_James_Daniel_A_DeSantis_Genevieve_Saur2016-wz]. The 2030 case capital costs come from Fraunhofer ISE’s cost forecast for PEM and alkaline electrolysis [Holst2021-nd]. Summary of the cost assumptions can be found in Table 1.

.Techno-economic Parameter20222030UnitsStack CAPEX$2.37$0.79$/cm2BoP CAPEX289103$/kWeStorage CAPEX$500$300$/kg \chH2Site Prep2%of direct capitalEngineering10%of direct capitalContingency15%of direct capitalPermitting15%of direct capitalPlanned Replacement15%of direct capitalUnplanned Replacement0.5%of direct capitalOverhead20%of labor costTax/Insurance2%of total CAPEXBoP Electricity Usage5.1kWh/kg \chH2

Using the parameters in Table 1, capital cost (CCAPEX=Cstack+Cstoragesuperscript𝐶𝐶𝐴𝑃𝐸𝑋superscript𝐶𝑠𝑡𝑎𝑐𝑘superscript𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒C^{CAPEX}=C^{stack}+C^{storage}italic_C start_POSTSUPERSCRIPT italic_C italic_A italic_P italic_E italic_X end_POSTSUPERSCRIPT = italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_a italic_c italic_k end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_o italic_r italic_a italic_g italic_e end_POSTSUPERSCRIPT), unplanned replacement costs (CUPRsuperscript𝐶𝑈𝑃𝑅C^{UPR}italic_C start_POSTSUPERSCRIPT italic_U italic_P italic_R end_POSTSUPERSCRIPT), planned replacement costs (CPRsuperscript𝐶𝑃𝑅C^{PR}italic_C start_POSTSUPERSCRIPT italic_P italic_R end_POSTSUPERSCRIPT), fixed operating cost (CfOPEXsuperscript𝐶𝑓𝑂𝑃𝐸𝑋C^{fOPEX}italic_C start_POSTSUPERSCRIPT italic_f italic_O italic_P italic_E italic_X end_POSTSUPERSCRIPT), and variable operating cost (CvOPEXsuperscript𝐶𝑣𝑂𝑃𝐸𝑋C^{vOPEX}italic_C start_POSTSUPERSCRIPT italic_v italic_O italic_P italic_E italic_X end_POSTSUPERSCRIPT) can be estimated. Assuming a plant life of 40 years and a discount rate of 8%, the present value of the project (PV𝑃𝑉PVitalic_P italic_V) can be estimated as shown in Equation 24.

PV=Cstack+Cstorage+y=140[CUPR+CPR+CfOPEX+CvOPEX]1(1+d)y𝑃𝑉superscript𝐶𝑠𝑡𝑎𝑐𝑘superscript𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒superscriptsubscript𝑦140delimited-[]superscript𝐶𝑈𝑃𝑅superscript𝐶𝑃𝑅superscript𝐶𝑓𝑂𝑃𝐸𝑋superscript𝐶𝑣𝑂𝑃𝐸𝑋1superscript1𝑑𝑦PV=C^{stack}+C^{storage}+\sum_{y=1}^{40}\left[C^{UPR}+C^{PR}+C^{fOPEX}+C^{%vOPEX}\right]\frac{1}{(1+d)^{y}}italic_P italic_V = italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_a italic_c italic_k end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_s italic_t italic_o italic_r italic_a italic_g italic_e end_POSTSUPERSCRIPT + ∑ start_POSTSUBSCRIPT italic_y = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 40 end_POSTSUPERSCRIPT [ italic_C start_POSTSUPERSCRIPT italic_U italic_P italic_R end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_P italic_R end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_f italic_O italic_P italic_E italic_X end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_v italic_O italic_P italic_E italic_X end_POSTSUPERSCRIPT ] divide start_ARG 1 end_ARG start_ARG ( 1 + italic_d ) start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT end_ARG(24)

The direct capital needed to calculate the above costs is the sum of the cost of the stack and cost of the balance of plant. For the scenario run without useage-dependent stack degradation, the replacement rate for the stack was fixed at 7 years [Brian_D_James_Daniel_A_DeSantis_Genevieve_Saur2016-wz]. For the scenarios where degradation is accounted for as shown in Equation 10, a degradation rate-informed replacement rate is calculated as follows. Based on the fixed H2A degradation rate, approximately Δdegmax1VsubscriptsuperscriptΔ𝑚𝑎𝑥𝑑𝑒𝑔1voltabsent\Delta^{max}_{deg}\approx 1$\frac{\mathrm{V}}{}$roman_Δ start_POSTSUPERSCRIPT italic_m italic_a italic_x end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_e italic_g end_POSTSUBSCRIPT ≈ 1 divide start_ARG roman_V end_ARG start_ARG end_ARG of degradation is allowed to occur before the stack needs to be replaced [Brian_D_James_Daniel_A_DeSantis_Genevieve_Saur2016-wz]. The operational optimization of the problem gives the degradation of a fresh stack after one year of operation (Δdeg1subscriptsuperscriptΔ1𝑑𝑒𝑔\Delta^{1}_{deg}roman_Δ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_e italic_g end_POSTSUBSCRIPT). The replacement rate can then be defined as:

rstack={ΔdegmaxΔdeg1Δdeg111Δdeg1>1subscript𝑟𝑠𝑡𝑎𝑐𝑘casessubscriptsuperscriptΔ𝑚𝑎𝑥𝑑𝑒𝑔subscriptsuperscriptΔ1𝑑𝑒𝑔subscriptsuperscriptΔ1𝑑𝑒𝑔11subscriptsuperscriptΔ1𝑑𝑒𝑔1r_{stack}=\begin{cases}\left\lfloor\frac{\Delta^{max}_{deg}}{\Delta^{1}_{deg}}%\right\rfloor\quad&\Delta^{1}_{deg}\leq 1\\1\quad&\Delta^{1}_{deg}>1\end{cases}italic_r start_POSTSUBSCRIPT italic_s italic_t italic_a italic_c italic_k end_POSTSUBSCRIPT = { start_ROW start_CELL ⌊ divide start_ARG roman_Δ start_POSTSUPERSCRIPT italic_m italic_a italic_x end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_e italic_g end_POSTSUBSCRIPT end_ARG start_ARG roman_Δ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_e italic_g end_POSTSUBSCRIPT end_ARG ⌋ end_CELL start_CELL roman_Δ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_e italic_g end_POSTSUBSCRIPT ≤ 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL roman_Δ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_e italic_g end_POSTSUBSCRIPT > 1 end_CELL end_ROW(25)

For implementation purposes, if the degradation of the stack exceeds 1 V in a given year, the stack is allowed to run until the end of the year before being replaced.

Fixed operating cost is the sum of the cost of labor, overhead, tax and insurance, and material. The labor rate was assumed to be $70 per hour per worker where 10 workers are needed for a system of this size, and the plant is assumed to operate 350 days per year.

Variable operating cost for the first year is simply obtained from the objective function of the operational optimization. Post-convergence of the operational optimization, the variable operating cost is updated to include degradation for the years leading up to replacement. This assumes that degradation in each future year is the same as the first year after stack replacement.

The amount of \chH2 produced in one year (M\chH2subscript𝑀\ch𝐻2M_{\ch{H2}}italic_M start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT) can be discounted in a similar way as the present value of the project as seen in Equation 26. The levelized cost of \chH2 is then calculated as the ratio of the two present values.

PV\chH2=y=140M\chH2(1+d)y𝑃subscript𝑉\ch𝐻2superscriptsubscript𝑦140subscript𝑀\ch𝐻2superscript1𝑑𝑦PV_{\ch{H2}}=\sum_{y=1}^{40}\frac{M_{\ch{H2}}}{(1+d)^{y}}italic_P italic_V start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_y = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 40 end_POSTSUPERSCRIPT divide start_ARG italic_M start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT end_ARG start_ARG ( 1 + italic_d ) start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT end_ARG(26)
LCOH=PVPV\chH2𝐿𝐶𝑂𝐻𝑃𝑉𝑃subscript𝑉\ch𝐻2LCOH=\frac{PV}{PV_{\ch{H2}}}italic_L italic_C italic_O italic_H = divide start_ARG italic_P italic_V end_ARG start_ARG italic_P italic_V start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT end_ARG(27)

2.4.2 Electrolyzer Performance and Model Assumptions

Validation of the electrochemical model without degradation at different temperatures and operating pressures is shown in Figure 3. The model fits well across varying current densities, pressures, and temperatures.

[0.45]Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (3) [0.45]Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (4)

Many degradation studies have been done on PEM cells that attempt to characterize the degradation rate of the cell as a function of the applied current density [Suermann2019-kz, Rakousky2017-te, Papakonstantinou2020-hj, Alia2019-lw, Li2021-nj, Frensch2019-ff]. We use data from these studies to construct a usage-based degradation rate. The operating current density and degradation rate have been averaged over the lifetime of the cell and only square and hold wave patterns were taken from the degradation studies [Suermann2019-kz, Rakousky2017-te, Papakonstantinou2020-hj, Alia2019-lw, Li2021-nj, Frensch2019-ff]. Additionally some studies exhibited a negative degradation rate likely to a decrease in ohmic losses from membrane thinning. For this work, those data points were not considered.

Figure 4 illustrates the points taken from literature, and Equation 28 shows the correlation found. The degradation rate increases linearly with the square of the current density for i>1Acm2𝑖1amperecentimeter2i>1$\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}$italic_i > 1 divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG. The experiments at low current density do not follow this linear trend but instead have a relatively constant degradation rate. The degradation rate was thus modeled as a piece-wise function shown in Equation 28. The constant in the equation is a fitted parameter from the data.

Pushing electrolyzers to higher and higher current densities past the 4 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG maximum presented in this work makes the economics more favorable when degradation is ignored [Chung2024-vr]. Bench scale experimentalists have already begun to push up to 10 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG [Martin2022-ek]. However, operating at higher and higher current densities could potentially result in increased degradation rates if one assumes the extrapolation of the trend in Figure 4.

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (5)
dVdegdt={30i130[i(t)]2i>1𝑑subscript𝑉𝑑𝑒𝑔𝑑𝑡cases30𝑖130superscriptdelimited-[]𝑖𝑡2𝑖1\frac{dV_{deg}}{dt}=\begin{cases}30\quad&i\leq 1\\30\left[i(t)\right]^{2}\quad&i>1\end{cases}divide start_ARG italic_d italic_V start_POSTSUBSCRIPT italic_d italic_e italic_g end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG = { start_ROW start_CELL 30 end_CELL start_CELL italic_i ≤ 1 end_CELL end_ROW start_ROW start_CELL 30 [ italic_i ( italic_t ) ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_i > 1 end_CELL end_ROW(28)

2.4.3 Electricity Price Scenarios

Corpus Christi, Texas was used as a case study for this work due to its proximity to existing \chH2 demand from the petrochemical sector on the Texas Gulf cost which has prompted commercial interest to deploy GW-scale electrolyzers in that region [Arjona2023-bc]. In order to consider the impact of current and future electricity price scenarios, historical electricity prices from the years 2022 and price projections available for 2030 were used. Electricity prices were taken from 2022 ERCOT South load zone historical pricing [noauthor_undated-so]. For the 2030 scenario, prices were taken from NREL’s Cambium future electricity prices model mid-case for Texas [Gagnon_undated-so]. These projected future prices represent a moderately decarbonized grid by 2030. Prices are shown in the left panel of Figure 5. The average electricity price is higher in 2022 than in 2030. However the 2030 price scenario exhibits more volatile prices.

[0.5]Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (6) [0.5]Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (7)

In order to show the model’s sensitivity to 2022 electricity prices, a case with electricity prices from the West Texas load zone in 2022 (another location with many planned electrolyzer projects) was run. For sensitivity to 2030 electricity prices, the Cambium model gives a scenario where the grid is 100% decarbonized by 2030 (high decarbonization) and 95% decarbonized by 2050 (low decarbonization). The duration curves for these price series in comparison to the mid-case are shown in the right panel of Figure 5.

2.4.4 Limitations of Model

While this model accounts for many of the aspects of dynamic operation including usage-based degradation, it does have some limitations. In this work we solve a non-linear, non-convex optimization with a local solver IPOPT. There is no guarantee we have converged on the global solution, so a lower cost solution could exist. However, any local minimum will be better than operating naively or statically and a global solution is not strictly necessary in practice.

Additionally, we model the economics of the system as a price-taker. In other words, we must accept the price of electricity, and our operation has no influence on the prices of electricity. In reality, especially with increasing demand on the grid for electrified industrial processes, dynamic operation to best utilize cheap electricity prices would influence the local cost of electricity, as shown by other studies [Tsay2023-se, He2021-kv].

3 Results and Discussion

In order to demonstrate the sensitivity of the model to capital cost assumptions, electricity price assumptions, and other constraint assumptions, various test cases were run. All scenarios contain the degradation correlation unless “no use-dependent degradation” is indicated. Capacity factor for the scenarios is calculated by taking the ratio of the energy actually used by the system and the energy used by the system if it were to operate at the maximum current density of 4 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG. A summary of the tests run with high level results are in Table 2.

CasePrice SeriesTotal CAPEX (in thousands)vOPEX (in thousands)LCOH ($/kg)Days of StorageNumber of Cells (in thousands)Degradation after 1 YearReplacement Rate (Years)Utilization
Degradation 2022 Case2022, South LZ$ 366,800$ 45,400$ 6.600.51116.20.452.225.8%
No Use-Dependent Degradation2022, South LZ$ 203,900$ 50,900$ 4.561.3950.1770.1%
Degradation, West Texas2022, West LZ$ 430,800$ 46,700$ 7.080.82141.80.313.220.5%
Degradation, Fixed CAPEX2022, South LZ$ 239,100$ 67,300$ 6.921.3950.11.971.067.5%
High Temperature2022, South LZ$ 362,000$ 45,600$ 6.560.84110.50.502.027.0%
No Safety Constraint, Fixed CAPEX2022, South LZ$ 315,200$ 47,500$ 6.210.51116.20.412.425.2%
Degradation 2030 Mid-Case2030, Texas Mid$ 200,000$ 9,400$ 2.470.20156.80.254.018.2%
2030 High CAPEX2030, Texas Mid$ 238,300$ 9,400$ 2.760.65159.10.244.118.1%
2030 Low CAPEX2030, Texas Mid$ 181,900$ 9,400$ 2.280.11177.80.195.115.8%
2030 High Decarbonization2030, Texas High$ 202,300$ 9,400$ 2.480.13161.30.254.017.8%
2030 Low Decarbonization2030, Texas Low$ 180,400$ 11,400$ 2.500.11132.10.333.022.1%

Degradation vs No Use-Dependent Degradation

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (8)

Figure 6 highlights the operational impact of incorporating current density dependent degradation in the techno-economic optimization model. Both scenarios produce optimal operating routines that ramp up current density (and therefore production of \chH2) during periods of low prices and switch to idling at 0.1 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG (the minimum assumed current density) during periods of high electricity prices [Weis2019-vj]. However, because the model with degradation is penalized by accumulating degradation, it operates at much lower current densities in order to minimize the cost of electricity while meeting the demand constraint of 50,000 kgdkilogramday\frac{\mathrm{kg}}{\mathrm{d}}divide start_ARG roman_kg end_ARG start_ARG roman_d end_ARG of \chH2. When electricity prices start to rise, both models switch to the idling state.

The overall effect of degradation on the operation profile can be seen from the current density distribution in Figure 7. The accumulating degradation causes an increased power demand which forces the model with degradation to favor lower current densities on average, including idling as much as possible while meeting the demand constraint. The net result is that electrolyzer stack utilization (or capacity factor) with degradation is 26% as compared to 70% in the case without degradation.

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (9)

Additionally, due to the increased overpotential from degradation, the case that accounts for degradation operates for more many more hours at the maximum temperature limit than the case without degradation. This is for two reasons: 1) the increased overpotential generates more heat in the system and would result in a higher temperature for the same inlet water flowrate, and 2) operating at a higher temperature lowers the activation and ohmic overpotentials of the cell that partially offset the impact of degradation.

Given today’s electricity prices and capital costs for the electrolyzer stack, accounting for degradation results in a 45% higher LCOH than when use-dependent degradation of the stack is ignored (see Figure 9). The case with no use-dependent degradation has a LCOH that agrees well with the work done by Chung et. al although our model accounts for crossover, static degradation, and the energy balance over the stack [Chung2024-vr]. The case without use-dependent degradation also sized 2.7 times more \chH2 storage than the case with it. Intuitively, when use-dependent degradation is not accounted for, the model is incentivized to maximize current density (and production) during periods of low electricity prices and turn down production during periods of high prices. This ”bang-bang” operating pattern results in larger need for energy storage. With degradation, there is a reduced incentive for operating at high current densities and thus storage requirements are lower. Overall use-dependent degradation results in an overpotential of 0.45 V/year that shortens stack replacement to 2.2 years vs. 7 years without modeling use-dependent degradation. A second location in West Texas was also run to show this dynamic operation approach works in more than one electricity market (see Table 2).

To demonstrate the value of the IDS optimization approach, we ran an operational optimization with use-dependent degradation using the size of stacks and storage from the no use-dependent degradation case. The operational profile can be seen in Figure S4. In this highly constrained scenario, the model with degradation is forced to operate at higher current densities much like the case without degradation. Yet the effect of degradation is seen by the model avoiding operation at maximum current density of 4 A/cm2. As a result, the system accumulates 1.97 Vvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG of degradation in one year. Consequently, stacks need to be replaced every year at the end of the year. This increases the levelized cost to $6.92/kg which is a 4.6% increase over the case with degradation and a 52% increase over the case without usage-based degradation.

To test the sensitivity of the levelized cost on the degradation correlation and the replacement voltage threshold, two other sensitivity cases were run and compared with the 2022 degradation case: one where the coefficient in Equation 28 is reduced by half to 15 and one where the maximum allowed replacement threshold voltage is decreased from 1 V to 0.5 V. Results from these runs are summarized in Figure S2. Reducing the degradation correlation coefficient results in a 5.2% decrease in LCOH due to the longer lifetime of these cells (3.04 years), reducing the planned replacement costs. Reducing the replacement threshold voltage results in an 8.5% increase in LCOH mainly due to more frequent stack replacement (every 2.00 years) due to the lower threshold. Additionally, as seen in Figure S3, changes in the underlying degradation assumptions do influence operation as well. When the coefficient is lowered to 15, the model can operate at higher current densities than the base case. However, when the voltage threshold is lowered, the model must operate at lower current densities to keep degradation (and therefore replacement rate) low.

Impact of Higher Temperature

Since the temperature limit was a binding constraint, particularly with use-dependent degradation (Figure 6), we ran a scenario where the upper bound for the temperature of the cell was increased from 80superscript8080^{\circ}80 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPTC to 90superscript9090^{\circ}90 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPTC. The purpose of altering this was to determine if the upper bound of the temperature constraint included in the model was binding. As seen in Figure S5, operation of the system with the higher temperature bound marginally increases the current density during periods of low electricity prices. This is due to the fact that operating at a higher temperature lowers both activation overpotentials and ohmic overpotentials, which reduces operating costs and incentivizes higher current density operation (see Figure 3). For example, at 1 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG and 60C the voltage is 1.78 Vvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG and at 1 Acm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG and 80C the voltage is 1.7 Vvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG.

When looking at the distribution of operating current densities over the year shown in Figure S6, it is clear the higher temperature upper bound case operates at slightly higher current densities generally. These hours of higher current density operation can take advantage of the extra \chH2 storage sized in the high temperature upper limit case (See Table 2). The smaller number of cells in the high temperature upper bound case combined with a greater use of storage results in a $0.04/kg lower LCOH when compared with the 2022 degradation case (see Figure 9). However, higher current density operation results in more degradation and a more frequent stack replacement rate of 2 years in comparison to the base case replacement rate of 2.2 years (See Table 2).

Impact of Recombination Catalyst and Safety Constraint

Industrial PEM membranes come embedded with a gas recombination catalyst on the anode side [Christopher_Bryce_Capuano_Morgan_Elizabeth_Pertosos_Nemanja_Danilovic2018-lw, Nicolas_Guillet2014-tq]. This catalyst lowers the concentration of \chH2 at the anode by reacting the \chH2 with oxygen to form water. In the original base model, we included a safety constraint. However, in practice, it may be difficult to enforce a safety constraint implying that the recombination catalyst might be the primary mitigation strategy. To evaluate whether the catalyst with 90% conversion is sufficient to ensure safe operation, we ran the model with the area and storage fixed from the cost-optimal base case with the catalyst present but without a safety constraint. Results are summarized in Figures S7 and S8.

The distribution of current densities with the relaxed safety constraint shifts to lower current densities. Intuitively, with the constraint relaxed, the model does not need to keep production of \chO2 at the anode high and regardless of the rate of crossover can operate in the most cost optimal manner. Relaxation of the safety constraint results in a lowered levelized cost of $6.21/kg. Though the levelized cost is lower, the \chH2 lost to crossover increases from 11,300 kg/year in the base case to 30,400 kg/year in the case without a safety constraint, nearly a 3x change. This \chH2 represents lost product as it is not recovered. Replacement rate increases slightly from 2.2 years to 2.4 years due to lower current density operation without the safety constraint, further contributing to the decrease in LCOH.

More important than the change in LCOH is the change in safe operating conditions. Without the safety constraint and with the recombination catalyst, the model exceeds the LFL of 4% at 1% of the time points. While only a small percentage of the time operating, crossing into the flammability region of the mixture of gases presents a serious safety concern with dynamic operation. In practice, the composition of the outlet gas of the anode should be monitored continuously. This composition measurement could potentially be integrated into a controller that varies the flowrate of \chN2 into the anode to keep \chH2 concentrations well below the LFL.

Future Electricity Prices and Future CAPEX

To test the sensitivity of these results to future electricity prices and capital costs, we evaluated the model based on a representative 2030 electricity price scenario for Texas and three possible capital cost projections. Capital cost projections in the mid-range case are $0.79/cm2centimeter2absent\frac{{\mathrm{cm}}^{2}}{}divide start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG start_ARG end_ARG, consistent with Fraunhofer ISE [Holst2021-nd]. The low capital cost case is $0.39/cm2centimeter2absent\frac{{\mathrm{cm}}^{2}}{}divide start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG start_ARG end_ARG, and the high captial cost case is $1.00/cm2centimeter2absent\frac{{\mathrm{cm}}^{2}}{}divide start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG start_ARG end_ARG.

The operational profile in Figure 8, shows that the 2030 mid-range CAPEX and high CAPEX case operate at similar current densities due to their similarly sized stacks and storage (see Table 2). Due to the increased cost of stacks in the high CAPEX case, the LCOH is 12% more than the mid-case (see Figure 9). For the lowest capital cost scenario, the number of cells increases by 13% and the amount of storage decreases by 47% compared to the mid-range case. With the greater number of cells, the scenario with the lowest capital cost can operate at lower current densities to avoid high degradation rates and keep operating costs lower. This results in a 7.7% decrease in LCOH from the mid-range case.

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (10)

In order to test sensitivity to future electricity prices, another two scenarios with differing electricity prices were run with the mid-range capital costs scenario as shown in Figure 5. Figure S10 shows the differences in operation for the three different electricity price scenarios: the mid-decarbonization case, low decarbonization, and high decarbonization. While we do see the lowest decarbonization case able to operate at higher current densities, and a much larger sized storage for the high decarbonization case, ultimately, the LCOH is quite similar between scenarios indicating a weak relationship between LCOH and electricity price for this particular location (see Figure 9).

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (11)

4 Conclusion

We developed a techno-economic optimization model for integrated design and scheduling of a PEM electrolyzer that respects temperature constraints, safety constraints, and models degradation of the electrolyzer stack as a function of its use. The model relies on an empirical correlation linking current density with degradation rate derived from experimental data in the literature, and is solved to co-optimize electrolyzer stack, balance of plant and storage capacity along with their operation. To enable computational tractability we employ number of techniques including approximating annual operations via operations over representative days, as well as 2-D GSS search algorithm that decomposes the investment and scheduling operating facilitates identification of locally optimal solutions of the resulting optimization model. We applied the model to explore the techno-economics of such a system and calculate the LOCH for various operating scenarios including current and future prices of electricity and stack capital costs.

Dynamic operation overall results in binding constraints on both temperature and safety limits. Heat management and safety of PEM systems must continue to be an area of focus for the operators of PEM systems if dynamic operation is to be successfully implemented. The monitoring and manipulation of stack temperature and anode gas composition will require detailed process control.

Using the correlation outlined in this work, accounting for degradation resulted in a \approx2 year stack lifetime in comparison to the 7 year assumed lifetime in the 2022 scenario. The increase in stack replacement frequency could potentially increase the materials burden on critical minerals like Ir, unless recycling becomes commonplace. Previous works have highlighted the scarcity of Ir especially when considering aggressive decarbonization scenarios [Minke2021-io, Riedmayer2023-nw]. The increased replacement frequency associated with dynamic operation could exacerbate this issue even with replacement rates projected to increase to 4absent4\approx 4≈ 4 years by 2030. While some experimental work has begun to address this issue, significant advancements in PEM electrolyzer efficiencies, a decrease in Ir loadings in PEM, and a focus on PEM catalyst recycling are critical going forward [Bernt2018-rj].

The LCOH is higher in the 2022 case with degradation when compared to running without degradation. This indicates an underestimation of LCOH when operating dynamically in models that do not account for use-dependent degradation. We also show that optimizing design without accounting for use-dependent degradation and subsequently incurring these degradation costs leads to 4.6% higher LCOH than co-optimized design and operations case. Additionally, not accounting for stack degradation leads to an over-sizing in hydrogen storage.

Dynamic operation does indeed make more cost effective hydrogen under present cost scenarios, and we show that dynamic operation makes even more sense under future electricity and capital cost scenarios by significantly minimizing the variable operating cost of electricity (see Figure 9).

While the results presented in this paper highlight issues with cost optimal design and operation of PEM electrolyzers, there are some limitations to this analysis. Our work sought to capture degradation behavior of PEM stacks, however, the degradation correlation was found using the limited data available in literature. Standard procedures for accelerated degradation of cells are needed in order to gather reliable data that then can be used in models. More in depth degradation studies that not only look at the effect of operating current density but also temperature and catalyst loading effects are needed. One other weakness of our approach is the fact that we solve a non-convex NLP with no guarantee of finding a global minimum. Indeed for a problem of this size, it could be expected that there would be multiple minima in the design and operation space.

Most importantly, the framework presented here to evaluate PEM electrolysis and hydrogen production can be applied to the design of other electricity-intensive processes. With growing interest in electrochemical/electricity driven processes, model set up and system design can be readily adapted to study other processes and systems. This framework can help quickly and effectively evaluate different processes on the basis of their economics while modeling the underlying physical phenomenon and dynamics.

Acknowledgements

The authors would like to acknowledge Edward Graham for his insightful contributions to this work. Funding for this work was provided by Analog Devices Inc.

Data Availability Statement

The model and data used to produce all figures and results will be provided upon reasonable request.

\printbibliography

5 Supporting Information

{refsection}

5.1 Mass and Energy Balance and Electrochemical Relations

The following is a detailed description of the mass and energy balances as well as the electrochemical relations used in this work. Tables S1 - S3 outline the nomenclature used in this work.

NameDescriptionUnitsValueNotes
Set Indices
iI𝑖𝐼i\in Iitalic_i ∈ italic_IChemical species-{\chH2,\chO2,\chH2O,\chN2}-
jJ𝑗𝐽j\in Jitalic_j ∈ italic_JStream numbers-{1,2,…,16}-
kK𝑘𝐾k\in Kitalic_k ∈ italic_KAnode/Cathode-{an,cat}-
rDr𝑟subscript𝐷𝑟r\in D_{r}italic_r ∈ italic_D start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPTRepresentative days-{1,2,…,7}-
dD𝑑𝐷d\in Ditalic_d ∈ italic_DActual days-{1,2,…,365}-

NameDescriptionUnitsValueNotes
F𝐹Fitalic_FFaraday’s constantCmolcoulombmole\frac{\mathrm{C}}{\mathrm{mol}}divide start_ARG roman_C end_ARG start_ARG roman_mol end_ARG96,485-
Acellsubscript𝐴𝑐𝑒𝑙𝑙A_{cell}italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPTCatalytic active areacm2centimeter2absent\frac{{\mathrm{cm}}^{2}}{}divide start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG start_ARG end_ARG450[Brian_D_James_Daniel_A_DeSantis_Genevieve_Saur2016-wz]
Amemsubscript𝐴𝑚𝑒𝑚A_{mem}italic_A start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPTArea of membrane/Size of one cellcm2centimeter2absent\frac{{\mathrm{cm}}^{2}}{}divide start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG start_ARG end_ARG450[Brian_D_James_Daniel_A_DeSantis_Genevieve_Saur2016-wz]
δelsubscript𝛿𝑒𝑙\delta_{el}italic_δ start_POSTSUBSCRIPT italic_e italic_l end_POSTSUBSCRIPTThickness of electrodecmcentimeterabsent\frac{\mathrm{cm}}{}divide start_ARG roman_cm end_ARG start_ARG end_ARG8.0×1038.0superscript1038.0\times 10^{-3}8.0 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT[Abdin2015-nl]
vansubscript𝑣𝑎𝑛v_{an}italic_v start_POSTSUBSCRIPT italic_a italic_n end_POSTSUBSCRIPTAnode volumemLmilliliterabsent\frac{\mathrm{mL}}{}divide start_ARG roman_mL end_ARG start_ARG end_ARGδelAmemabsentsubscript𝛿𝑒𝑙subscript𝐴𝑚𝑒𝑚\approx\delta_{el}A_{mem}≈ italic_δ start_POSTSUBSCRIPT italic_e italic_l end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPT-
vcatsubscript𝑣𝑐𝑎𝑡v_{cat}italic_v start_POSTSUBSCRIPT italic_c italic_a italic_t end_POSTSUBSCRIPTCathode volumemLmilliliterabsent\frac{\mathrm{mL}}{}divide start_ARG roman_mL end_ARG start_ARG end_ARGδelAmemabsentsubscript𝛿𝑒𝑙subscript𝐴𝑚𝑒𝑚\approx\delta_{el}A_{mem}≈ italic_δ start_POSTSUBSCRIPT italic_e italic_l end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPT-
δmemsubscript𝛿𝑚𝑒𝑚\delta_{mem}italic_δ start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPTMembrane thicknesscmcentimeterabsent\frac{\mathrm{cm}}{}divide start_ARG roman_cm end_ARG start_ARG end_ARG1.75×1021.75superscript1021.75\times 10^{-2}1.75 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT[Liso2018-iy]
ngsubscript𝑛𝑔n_{g}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPTElectro-osmotic drift coefficientunitless-[Medina2010-lh], Equation S17
ΔGΔsuperscript𝐺\Delta G^{\circ}roman_Δ italic_G start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPTStandard free energy of reactionkJmolkilojoulemole\frac{\mathrm{kJ}}{\mathrm{mol}}divide start_ARG roman_kJ end_ARG start_ARG roman_mol end_ARG237.2237.2237.2237.2[Liso2018-iy]
Rgassubscript𝑅𝑔𝑎𝑠R_{gas}italic_R start_POSTSUBSCRIPT italic_g italic_a italic_s end_POSTSUBSCRIPTGas constantJmolKjouletimesmolekelvin\frac{\mathrm{J}}{\mathrm{mol}\text{\,}\mathrm{K}}divide start_ARG roman_J end_ARG start_ARG start_ARG roman_mol end_ARG start_ARG times end_ARG start_ARG roman_K end_ARG end_ARG8.3148.3148.3148.314-
Trefsubscript𝑇𝑟𝑒𝑓T_{ref}italic_T start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPTReference temperature for thermoKkelvinabsent\frac{\mathrm{K}}{}divide start_ARG roman_K end_ARG start_ARG end_ARG298298298298[Liso2018-iy]
Hisubscript𝐻𝑖H_{i}italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPTEnthalpy of species i𝑖iitalic_iJmoljoulemole\frac{\mathrm{J}}{\mathrm{mol}}divide start_ARG roman_J end_ARG start_ARG roman_mol end_ARG-[BurgessUnknown-hi]
Cp,thsubscript𝐶𝑝𝑡C_{p,th}italic_C start_POSTSUBSCRIPT italic_p , italic_t italic_h end_POSTSUBSCRIPTLumped thermal capacitanceJKjoulekelvin\frac{\mathrm{J}}{\mathrm{K}}divide start_ARG roman_J end_ARG start_ARG roman_K end_ARG-Scaled from [Espinosa-Lopez2018-hb]
Rthsubscript𝑅𝑡R_{th}italic_R start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPTThermal resistance of stacksJKsecondtimesjoulekelvin\frac{\mathrm{s}}{\mathrm{J}\text{\,}\mathrm{K}}divide start_ARG roman_s end_ARG start_ARG start_ARG roman_J end_ARG start_ARG times end_ARG start_ARG roman_K end_ARG end_ARG-Scaled from [Espinosa-Lopez2018-hb]
i0,an,refsubscript𝑖0𝑎𝑛𝑟𝑒𝑓i_{0,an,ref}italic_i start_POSTSUBSCRIPT 0 , italic_a italic_n , italic_r italic_e italic_f end_POSTSUBSCRIPTExchange current density at Trefsubscript𝑇𝑟𝑒𝑓T_{ref}italic_T start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPTAcm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG5×10125superscript10125\times 10^{-12}5 × 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT[Liso2018-iy]
i0,cat,refsubscript𝑖0𝑐𝑎𝑡𝑟𝑒𝑓i_{0,cat,ref}italic_i start_POSTSUBSCRIPT 0 , italic_c italic_a italic_t , italic_r italic_e italic_f end_POSTSUBSCRIPTExchange current density at Trefsubscript𝑇𝑟𝑒𝑓T_{ref}italic_T start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPTAcm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG1×1031superscript1031\times 10^{-3}1 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT[Liso2018-iy]
αansubscript𝛼𝑎𝑛\alpha_{an}italic_α start_POSTSUBSCRIPT italic_a italic_n end_POSTSUBSCRIPTBulter-Volmer equation parameter--Fitted parameter
αcatsubscript𝛼𝑐𝑎𝑡\alpha_{cat}italic_α start_POSTSUBSCRIPT italic_c italic_a italic_t end_POSTSUBSCRIPTBulter-Volmer equation parameter--Fitted parameter
γM,ansubscript𝛾𝑀𝑎𝑛\gamma_{M,an}italic_γ start_POSTSUBSCRIPT italic_M , italic_a italic_n end_POSTSUBSCRIPTAnode roughness factor-1198Equation S8
γM,catsubscript𝛾𝑀𝑐𝑎𝑡\gamma_{M,cat}italic_γ start_POSTSUBSCRIPT italic_M , italic_c italic_a italic_t end_POSTSUBSCRIPTCathode roughness factor-286Equation S8
φIsubscript𝜑𝐼\varphi_{I}italic_φ start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPTFraction of metal catalyst in contact with ionomer-0.75[Liso2018-iy]
mM,ansubscript𝑚𝑀𝑎𝑛m_{M,an}italic_m start_POSTSUBSCRIPT italic_M , italic_a italic_n end_POSTSUBSCRIPTCatalyst loading at anodegcm2gramcentimeter2\frac{\mathrm{g}}{{\mathrm{cm}}^{2}}divide start_ARG roman_g end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG0.9×1030.9superscript1030.9\times 10^{-3}0.9 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT[Bernt2020-ne]
mM,catsubscript𝑚𝑀𝑐𝑎𝑡m_{M,cat}italic_m start_POSTSUBSCRIPT italic_M , italic_c italic_a italic_t end_POSTSUBSCRIPTCatalyst loading at cathodegcm2gramcentimeter2\frac{\mathrm{g}}{{\mathrm{cm}}^{2}}divide start_ARG roman_g end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG0.3×1030.3superscript1030.3\times 10^{-3}0.3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT[Bernt2020-ne]
ρM,ansubscript𝜌𝑀𝑎𝑛\rho_{M,an}italic_ρ start_POSTSUBSCRIPT italic_M , italic_a italic_n end_POSTSUBSCRIPTCatalyst density anodegcm3gramcentimeter3\frac{\mathrm{g}}{{\mathrm{cm}}^{3}}divide start_ARG roman_g end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 3 end_ARG end_ARG11.66[Bernt2020-ne]
ρM,catsubscript𝜌𝑀𝑐𝑎𝑡\rho_{M,cat}italic_ρ start_POSTSUBSCRIPT italic_M , italic_c italic_a italic_t end_POSTSUBSCRIPTCatalyst density cathodegcm3gramcentimeter3\frac{\mathrm{g}}{{\mathrm{cm}}^{3}}divide start_ARG roman_g end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 3 end_ARG end_ARG21.45[Bernt2020-ne]
dM,ansubscript𝑑𝑀𝑎𝑛d_{M,an}italic_d start_POSTSUBSCRIPT italic_M , italic_a italic_n end_POSTSUBSCRIPTCatalyst crystal diameter anodecmcentimeterabsent\frac{\mathrm{cm}}{}divide start_ARG roman_cm end_ARG start_ARG end_ARG2.9×1072.9superscript1072.9\times 10^{-7}2.9 × 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT[Bernt2020-ne]
dM,catsubscript𝑑𝑀𝑐𝑎𝑡d_{M,cat}italic_d start_POSTSUBSCRIPT italic_M , italic_c italic_a italic_t end_POSTSUBSCRIPTCatalyst crystal diameter cathodecmcentimeterabsent\frac{\mathrm{cm}}{}divide start_ARG roman_cm end_ARG start_ARG end_ARG2.2×1072.2superscript1072.2\times 10^{-7}2.2 × 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT[Bernt2020-ne]
λmsubscript𝜆𝑚\lambda_{m}italic_λ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPTHydration factor of PEMmol\chH2Omol\chSO3subscriptmol\ch𝐻2𝑂subscriptmol\ch𝑆𝑂3\frac{\text{mol}_{\ch{H2O}}}{\text{mol}_{\ch{SO3}}}divide start_ARG mol start_POSTSUBSCRIPT italic_H 2 italic_O end_POSTSUBSCRIPT end_ARG start_ARG mol start_POSTSUBSCRIPT italic_S italic_O 3 end_POSTSUBSCRIPT end_ARG21[Gorgun2006-ej], Equation S11
σmemsubscript𝜎𝑚𝑒𝑚\sigma_{mem}italic_σ start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPTConductance of membrane--[Gorgun2006-ej], Equation S12
pelecsubscript𝑝𝑒𝑙𝑒𝑐p_{elec}italic_p start_POSTSUBSCRIPT italic_e italic_l italic_e italic_c end_POSTSUBSCRIPTPrice of electricity--[noauthor_undated-so, Gagnon_undated-so]
pwatersubscript𝑝𝑤𝑎𝑡𝑒𝑟p_{water}italic_p start_POSTSUBSCRIPT italic_w italic_a italic_t italic_e italic_r end_POSTSUBSCRIPTPrice of water$1000galcurrency-dollar1000gal\frac{\$}{1000\text{ gal}}divide start_ARG $ end_ARG start_ARG 1000 gal end_ARG2.78[Water_Innovations_Inc_undated-io]

NameDescriptionUnitsValuePrimary Decision VariableNotes
i(t)𝑖𝑡i(t)italic_i ( italic_t )Current densityAcm2amperecentimeter2\frac{\mathrm{A}}{{\mathrm{cm}}^{2}}divide start_ARG roman_A end_ARG start_ARG power start_ARG roman_cm end_ARG start_ARG 2 end_ARG end_ARG0.140.140.1-40.1 - 4\checkmark-
n˙\chH2O,1(t)subscript˙𝑛\ch𝐻2𝑂1𝑡\dot{n}_{\ch{H2O},1}(t)over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H 2 italic_O , 1 end_POSTSUBSCRIPT ( italic_t )Inlet water flowratemolsmolesecond\frac{\mathrm{mol}}{\mathrm{s}}divide start_ARG roman_mol end_ARG start_ARG roman_s end_ARG050,0000500000-50,0000 - 50 , 000\checkmarkbase case
n˙3(t)subscript˙𝑛3𝑡\dot{n}_{3}(t)over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_t )Total flow out of anodemolsmolesecond\frac{\mathrm{mol}}{\mathrm{s}}divide start_ARG roman_mol end_ARG start_ARG roman_s end_ARG010NcAcelli4F010subscript𝑁𝑐subscript𝐴𝑐𝑒𝑙𝑙𝑖4𝐹0-10N_{c}\frac{A_{cell}i}{4F}0 - 10 italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT divide start_ARG italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT italic_i end_ARG start_ARG 4 italic_F end_ARG\checkmarkbase case
n˙4(t)subscript˙𝑛4𝑡\dot{n}_{4}(t)over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_t )Total flow out of cathodemolsmolesecond\frac{\mathrm{mol}}{\mathrm{s}}divide start_ARG roman_mol end_ARG start_ARG roman_s end_ARG010NcAcelli2F010subscript𝑁𝑐subscript𝐴𝑐𝑒𝑙𝑙𝑖2𝐹0-10N_{c}\frac{A_{cell}i}{2F}0 - 10 italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT divide start_ARG italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT italic_i end_ARG start_ARG 2 italic_F end_ARG\checkmarkbase case
n˙13(t),n˙14subscript˙𝑛13𝑡subscript˙𝑛14\dot{n}_{13}(t),\dot{n}_{14}over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_t ) , over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 14 end_POSTSUBSCRIPTSplit between satisfying demand and storagemolsmolesecond\frac{\mathrm{mol}}{\mathrm{s}}divide start_ARG roman_mol end_ARG start_ARG roman_s end_ARG01060superscript1060-10^{6}0 - 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT\checkmarkbase case
n˙16(t)subscript˙𝑛16𝑡\dot{n}_{16}(t)over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 16 end_POSTSUBSCRIPT ( italic_t )Flowrate out of storagemolsmolesecond\frac{\mathrm{mol}}{\mathrm{s}}divide start_ARG roman_mol end_ARG start_ARG roman_s end_ARG01060superscript1060-10^{6}0 - 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT\checkmarkbase case
n˙11(t)subscript˙𝑛11𝑡\dot{n}_{11}(t)over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( italic_t )Flowrate of \chN2molsmolesecond\frac{\mathrm{mol}}{\mathrm{s}}divide start_ARG roman_mol end_ARG start_ARG roman_s end_ARG01030superscript1030-10^{3}0 - 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT\checkmarkbase case
Ni(t)subscript𝑁𝑖𝑡N_{i}(t)italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t )Moles of species i𝑖iitalic_imolmoleabsent\frac{\mathrm{mol}}{}divide start_ARG roman_mol end_ARG start_ARG end_ARG--
n˙i,j(t)subscript˙𝑛𝑖𝑗𝑡\dot{n}_{i,j}(t)over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ( italic_t )Molar flow rate of species j𝑗jitalic_j in stream i𝑖iitalic_imolsmolesecond\frac{\mathrm{mol}}{\mathrm{s}}divide start_ARG roman_mol end_ARG start_ARG roman_s end_ARG--
yj,k(t)subscript𝑦𝑗𝑘𝑡y_{j,k}(t)italic_y start_POSTSUBSCRIPT italic_j , italic_k end_POSTSUBSCRIPT ( italic_t )Mole fraction of species j𝑗jitalic_j in stream at electrode k𝑘kitalic_k---
T(t)𝑇𝑡T(t)italic_T ( italic_t )Temperature of anode and cathode°CdegreeCelsiusabsent\frac{\mathrm{\SIUnitSymbolCelsius}}{}divide start_ARG °C end_ARG start_ARG end_ARG6080608060-8060 - 80base case
6090609060-9060 - 90sensitivity
X\chH2subscript𝑋\ch𝐻2X_{\ch{H2}}italic_X start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPTConversion of hydrogen crossing from cathode to anode-0.9base case
Vtotal(t)superscript𝑉𝑡𝑜𝑡𝑎𝑙𝑡V^{total}(t)italic_V start_POSTSUPERSCRIPT italic_t italic_o italic_t italic_a italic_l end_POSTSUPERSCRIPT ( italic_t )Cell voltageVvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG-base case
Vdundeg(t)subscriptsuperscript𝑉𝑢𝑛𝑑𝑒𝑔𝑑𝑡V^{undeg}_{d}(t)italic_V start_POSTSUPERSCRIPT italic_u italic_n italic_d italic_e italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_t )Cell voltage not including degradation on day d𝑑ditalic_dVvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG-base case
δVrdeg(t)𝛿subscriptsuperscript𝑉𝑑𝑒𝑔𝑟𝑡\delta V^{deg}_{r}(t)italic_δ italic_V start_POSTSUPERSCRIPT italic_d italic_e italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t )Intra-day change in degradation up to time t𝑡titalic_tVvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG-base case
Vdcuml,deg(t)subscriptsuperscript𝑉𝑐𝑢𝑚𝑙𝑑𝑒𝑔𝑑𝑡V^{cuml,deg}_{d}(t)italic_V start_POSTSUPERSCRIPT italic_c italic_u italic_m italic_l , italic_d italic_e italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_t )Cumulative degradation up to day d𝑑ditalic_d and time t𝑡titalic_tVvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG-base case
Celecsuperscript𝐶𝑒𝑙𝑒𝑐C^{elec}italic_C start_POSTSUPERSCRIPT italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPTAnnual cost of electricity$-base case
CBoP,elecsuperscript𝐶𝐵𝑜𝑃𝑒𝑙𝑒𝑐C^{BoP,elec}italic_C start_POSTSUPERSCRIPT italic_B italic_o italic_P , italic_e italic_l italic_e italic_c end_POSTSUPERSCRIPTAnnual cost of electricity used by balance of plant$-base case
Cwatersuperscript𝐶𝑤𝑎𝑡𝑒𝑟C^{water}italic_C start_POSTSUPERSCRIPT italic_w italic_a italic_t italic_e italic_r end_POSTSUPERSCRIPTAnnual cost of de-ionized water$-base case
C\chN2superscript𝐶\ch𝑁2C^{\ch{N2}}italic_C start_POSTSUPERSCRIPT italic_N 2 end_POSTSUPERSCRIPTAnnual cost of purge nitrogen$-base case
δrsubscript𝛿𝑟\delta_{r}italic_δ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPTChange in storage over representative period r𝑟ritalic_rmolmoleabsent\frac{\mathrm{mol}}{}divide start_ARG roman_mol end_ARG start_ARG end_ARG-
Λ\chH2subscriptΛ\ch𝐻2\Lambda_{\ch{H2}}roman_Λ start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPTHydrogen storagemolmoleabsent\frac{\mathrm{mol}}{}divide start_ARG roman_mol end_ARG start_ARG end_ARG-

5.1.1 PEM Electrolyzer Potentials

The current and voltage relationship used in this work borrows from the work done by [Gorgun2006-ej, Liso2018-iy, Espinosa-Lopez2018-hb] and follows a standard procedure of estimating open circuit voltage and related overpotentials for the system as seen in Equation S1. The total voltage is then the sum of these potentials.

Vtotal=Voc+Vact+Vohm+Vdegsubscript𝑉𝑡𝑜𝑡𝑎𝑙subscript𝑉𝑜𝑐subscript𝑉𝑎𝑐𝑡subscript𝑉𝑜𝑚subscript𝑉𝑑𝑒𝑔\displaystyle V_{total}=V_{oc}+V_{act}+V_{ohm}+V_{deg}italic_V start_POSTSUBSCRIPT italic_t italic_o italic_t italic_a italic_l end_POSTSUBSCRIPT = italic_V start_POSTSUBSCRIPT italic_o italic_c end_POSTSUBSCRIPT + italic_V start_POSTSUBSCRIPT italic_a italic_c italic_t end_POSTSUBSCRIPT + italic_V start_POSTSUBSCRIPT italic_o italic_h italic_m end_POSTSUBSCRIPT + italic_V start_POSTSUBSCRIPT italic_d italic_e italic_g end_POSTSUBSCRIPT(S1)

Degradation of the cell appears as an increase in operating voltage of the cell. Discussion of the calculation of degradation for a cell as a function of usage is presented in the Optimization section.

Thermodynamic Potential

Thermodynamic voltage is described by the free energy of reaction as shown in Equation S2. In general, this free energy of reaction as well as the entropy and enthalpy are functions of pressure and temperature.

Vrev=ΔG2Fsubscript𝑉𝑟𝑒𝑣Δ𝐺2𝐹\displaystyle V_{rev}=\frac{\Delta G}{2F}italic_V start_POSTSUBSCRIPT italic_r italic_e italic_v end_POSTSUBSCRIPT = divide start_ARG roman_Δ italic_G end_ARG start_ARG 2 italic_F end_ARG(S2)
ΔG=ΔHTΔSΔ𝐺Δ𝐻𝑇Δ𝑆\displaystyle\Delta G=\Delta H-T\Delta Sroman_Δ italic_G = roman_Δ italic_H - italic_T roman_Δ italic_S(S3)

For this work, the enthalpy and entropy are assumed to be functions of temperature only. Correlations used to estimate enthalpies and entropies for \chH2O, \chH2, and \chO2 were taken from the NIST webbook [BurgessUnknown-hi].

The Nernst Equation corrects this thermodynamic voltage for conditions other than the standard condition.

Vocsubscript𝑉𝑜𝑐\displaystyle V_{oc}italic_V start_POSTSUBSCRIPT italic_o italic_c end_POSTSUBSCRIPT=VrevRT2Fln(aH2OaH2aO21/2)absentsuperscriptsubscript𝑉𝑟𝑒𝑣𝑅𝑇2𝐹subscript𝑎subscript𝐻2𝑂subscript𝑎subscript𝐻2superscriptsubscript𝑎subscript𝑂212\displaystyle=V_{rev}^{\circ}-\frac{RT}{2F}\ln\left(\frac{a_{H_{2}O}}{a_{H_{2}%}a_{O_{2}}^{1/2}}\right)= italic_V start_POSTSUBSCRIPT italic_r italic_e italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT - divide start_ARG italic_R italic_T end_ARG start_ARG 2 italic_F end_ARG roman_ln ( divide start_ARG italic_a start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT end_ARG )(S4)
Vocsubscript𝑉𝑜𝑐\displaystyle V_{oc}italic_V start_POSTSUBSCRIPT italic_o italic_c end_POSTSUBSCRIPT=Vrev+RT2Fln(PH2PPO2P)absentsuperscriptsubscript𝑉𝑟𝑒𝑣𝑅𝑇2𝐹subscript𝑃subscript𝐻2superscript𝑃subscript𝑃subscript𝑂2superscript𝑃\displaystyle=V_{rev}^{\circ}+\frac{RT}{2F}\ln\left(\frac{P_{H_{2}}}{P^{\circ}%}\sqrt{\frac{P_{O_{2}}}{P^{\circ}}}\right)= italic_V start_POSTSUBSCRIPT italic_r italic_e italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT + divide start_ARG italic_R italic_T end_ARG start_ARG 2 italic_F end_ARG roman_ln ( divide start_ARG italic_P start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT end_ARG square-root start_ARG divide start_ARG italic_P start_POSTSUBSCRIPT italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_P start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT end_ARG end_ARG )(S5)

As is consistent with other PEM electrolyzers models, the activity of water is assumed to be unity in order to reduce Equation S4 to Equation S5 [Gorgun2006-ej, Liso2018-iy, Espinosa-Lopez2018-hb]. The reference pressure is assumed to be 1 bar with P\chH2subscript𝑃\ch𝐻2P_{\ch{H2}}italic_P start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT and P\chO2subscript𝑃\ch𝑂2P_{\ch{O2}}italic_P start_POSTSUBSCRIPT italic_O 2 end_POSTSUBSCRIPT being 30 bar and 1 bar, respectively.

Activation Overpotential

Activation overpotential is determined using the Butler-Volmer equation applied to the anode and cathode. The sum of the resulting overpotentials is the total activation overpotential.

Vact=RTαanFarcsinh(i2i0,an)+RTαcatFarcsinh(i2i0,cat)subscript𝑉𝑎𝑐𝑡𝑅𝑇subscript𝛼𝑎𝑛𝐹arcsinh𝑖2subscript𝑖0𝑎𝑛𝑅𝑇subscript𝛼𝑐𝑎𝑡𝐹arcsinh𝑖2subscript𝑖0𝑐𝑎𝑡\displaystyle V_{act}=\frac{RT}{\alpha_{an}F}\text{arcsinh}\left(\frac{i}{2i_{%0,an}}\right)+\frac{RT}{\alpha_{cat}F}\text{arcsinh}\left(\frac{i}{2i_{0,cat}}\right)italic_V start_POSTSUBSCRIPT italic_a italic_c italic_t end_POSTSUBSCRIPT = divide start_ARG italic_R italic_T end_ARG start_ARG italic_α start_POSTSUBSCRIPT italic_a italic_n end_POSTSUBSCRIPT italic_F end_ARG arcsinh ( divide start_ARG italic_i end_ARG start_ARG 2 italic_i start_POSTSUBSCRIPT 0 , italic_a italic_n end_POSTSUBSCRIPT end_ARG ) + divide start_ARG italic_R italic_T end_ARG start_ARG italic_α start_POSTSUBSCRIPT italic_c italic_a italic_t end_POSTSUBSCRIPT italic_F end_ARG arcsinh ( divide start_ARG italic_i end_ARG start_ARG 2 italic_i start_POSTSUBSCRIPT 0 , italic_c italic_a italic_t end_POSTSUBSCRIPT end_ARG )(S6)

According to the kinetic theory used to derive the Butler-Volmer equation above, αansubscript𝛼𝑎𝑛\alpha_{an}italic_α start_POSTSUBSCRIPT italic_a italic_n end_POSTSUBSCRIPT and αcatsubscript𝛼𝑐𝑎𝑡\alpha_{cat}italic_α start_POSTSUBSCRIPT italic_c italic_a italic_t end_POSTSUBSCRIPT should sum to the number of electrons transferred in the reaction [Thomas_Fuller_undated-ig]. As such, for a PEM, system they should sum to 2. However, in literature, αansubscript𝛼𝑎𝑛\alpha_{an}italic_α start_POSTSUBSCRIPT italic_a italic_n end_POSTSUBSCRIPT, αcat,i0,an,subscript𝛼𝑐𝑎𝑡subscript𝑖0𝑎𝑛\alpha_{cat},i_{0,an},italic_α start_POSTSUBSCRIPT italic_c italic_a italic_t end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 0 , italic_a italic_n end_POSTSUBSCRIPT , and i0,catsubscript𝑖0𝑐𝑎𝑡i_{0,cat}italic_i start_POSTSUBSCRIPT 0 , italic_c italic_a italic_t end_POSTSUBSCRIPT are used as fitting parameters for models when data for a polarization curve is available. This had led to a wide variety of charge transfer coefficients and exchange current densities. For this model charge transfer coefficients were left as fitting parameters for the system with the constraint that their sum could not exceed n=2𝑛2n=2italic_n = 2. Parameters were found as minimization of the sum of squared errors. Reference exchange current densities were chosen from typical values used in literature and corrected for temperature and roughness of the catalyst by Equations S7 - S9 as was done by Görgün et al [Falcao2020-vj, Gorgun2006-ej].

i0,ksuperscriptsubscript𝑖0𝑘\displaystyle i_{0,k}^{*}italic_i start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT=i0,ref,ke[EaR(1T1Tref)]absentsubscript𝑖0𝑟𝑒𝑓𝑘superscript𝑒delimited-[]subscript𝐸𝑎𝑅1𝑇1subscript𝑇𝑟𝑒𝑓\displaystyle=i_{0,ref,k}e^{\left[\frac{-E_{a}}{R}\left(\frac{1}{T}-\frac{1}{T%_{ref}}\right)\right]}= italic_i start_POSTSUBSCRIPT 0 , italic_r italic_e italic_f , italic_k end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT [ divide start_ARG - italic_E start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG start_ARG italic_R end_ARG ( divide start_ARG 1 end_ARG start_ARG italic_T end_ARG - divide start_ARG 1 end_ARG start_ARG italic_T start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPT end_ARG ) ] end_POSTSUPERSCRIPT(S7)
γM,ksubscript𝛾𝑀𝑘\displaystyle\gamma_{M,k}italic_γ start_POSTSUBSCRIPT italic_M , italic_k end_POSTSUBSCRIPT=φlmM,k6ρM,kdM,kabsentsubscript𝜑𝑙subscript𝑚𝑀𝑘6subscript𝜌𝑀𝑘subscript𝑑𝑀𝑘\displaystyle=\varphi_{l}m_{M,k}\frac{6}{\rho_{M,k}d_{M,k}}= italic_φ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_M , italic_k end_POSTSUBSCRIPT divide start_ARG 6 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT italic_M , italic_k end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_M , italic_k end_POSTSUBSCRIPT end_ARG(S8)
i0,ksubscript𝑖0𝑘\displaystyle i_{0,k}italic_i start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT=γM,ki0,kabsentsubscript𝛾𝑀𝑘superscriptsubscript𝑖0𝑘\displaystyle=\gamma_{M,k}i_{0,k}^{*}= italic_γ start_POSTSUBSCRIPT italic_M , italic_k end_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT(S9)
Ohmic Overpotential

The ohmic resistance is a function of the thickness of the membrane, membrane conductivity, and operating current density. Membrane conductivity is a function of membrane hydration and operating temperature of the electrolyzer as seen in Equations S10 - S12. Görgün et al used an empirical relation for the water hydration factor, λmsubscript𝜆𝑚\lambda_{m}italic_λ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, and σmemsubscript𝜎𝑚𝑒𝑚\sigma_{mem}italic_σ start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPT where 1σmem=Rohm1subscript𝜎𝑚𝑒𝑚subscript𝑅𝑜𝑚\frac{1}{\sigma_{mem}}=R_{ohm}divide start_ARG 1 end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPT end_ARG = italic_R start_POSTSUBSCRIPT italic_o italic_h italic_m end_POSTSUBSCRIPT [Gorgun2006-ej]. Under normal operating conditions the activity of water is such that λm21subscript𝜆𝑚21\lambda_{m}\approx 21italic_λ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≈ 21 , which was the value used for this study [Maier_undated-zb].

Vohmsubscript𝑉𝑜𝑚\displaystyle V_{ohm}italic_V start_POSTSUBSCRIPT italic_o italic_h italic_m end_POSTSUBSCRIPT=δmemσmemiabsentsubscript𝛿𝑚𝑒𝑚subscript𝜎𝑚𝑒𝑚𝑖\displaystyle=\frac{\delta_{mem}}{\sigma_{mem}}i= divide start_ARG italic_δ start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPT end_ARG italic_i(S10)
λmsubscript𝜆𝑚\displaystyle\lambda_{m}italic_λ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT=0.43+17.81aH2O39.85aH2O2+36aH2O3absent0.4317.81subscript𝑎subscript𝐻2𝑂39.85superscriptsubscript𝑎subscript𝐻2𝑂236superscriptsubscript𝑎subscript𝐻2𝑂3\displaystyle=0.43+17.81a_{H_{2}O}-39.85a_{H_{2}O}^{2}+36a_{H_{2}O}^{3}= 0.43 + 17.81 italic_a start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT - 39.85 italic_a start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 36 italic_a start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT(S11)
σmemsubscript𝜎𝑚𝑒𝑚\displaystyle\sigma_{mem}italic_σ start_POSTSUBSCRIPT italic_m italic_e italic_m end_POSTSUBSCRIPT=(0.00514λm0.00326)e(1268(13031T))absent0.00514subscript𝜆𝑚0.00326superscript𝑒126813031𝑇\displaystyle=(0.00514\lambda_{m}-0.00326)e^{\left(1268\left(\frac{1}{303}-%\frac{1}{T}\right)\right)}= ( 0.00514 italic_λ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT - 0.00326 ) italic_e start_POSTSUPERSCRIPT ( 1268 ( divide start_ARG 1 end_ARG start_ARG 303 end_ARG - divide start_ARG 1 end_ARG start_ARG italic_T end_ARG ) ) end_POSTSUPERSCRIPT(S12)

5.1.2 PEM Electrolyzer Mass Balances

Anode


A transient water balance around the electrolyzer is shown in Equation S13.

dNH2O,andt=n˙H2O,2n˙H2O,3n˙H2O,3vapn˙H2O,crossn˙H2O,consum+n˙H2O,gen𝑑subscript𝑁subscript𝐻2𝑂𝑎𝑛𝑑𝑡subscript˙𝑛subscript𝐻2𝑂2subscript˙𝑛subscript𝐻2𝑂3superscriptsubscript˙𝑛subscript𝐻2𝑂3𝑣𝑎𝑝subscript˙𝑛subscript𝐻2𝑂𝑐𝑟𝑜𝑠𝑠subscript˙𝑛subscript𝐻2𝑂𝑐𝑜𝑛𝑠𝑢𝑚subscript˙𝑛subscript𝐻2𝑂𝑔𝑒𝑛\displaystyle\frac{dN_{H_{2}O,an}}{dt}=\dot{n}_{H_{2}O,2}-\dot{n}_{H_{2}O,3}-%\dot{n}_{H_{2}O,3}^{vap}-\dot{n}_{H_{2}O,cross}-\dot{n}_{H_{2}O,consum}+\dot{n%}_{H_{2}O,gen}divide start_ARG italic_d italic_N start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_a italic_n end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG = over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 2 end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 3 end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_v italic_a italic_p end_POSTSUPERSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_c italic_o italic_n italic_s italic_u italic_m end_POSTSUBSCRIPT + over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_g italic_e italic_n end_POSTSUBSCRIPT(S13)
0=n˙H2O,2n˙H2O,3n˙H2O,3vapn˙H2O,crossn˙H2O,consum+n˙H2,crossXH20subscript˙𝑛subscript𝐻2𝑂2subscript˙𝑛subscript𝐻2𝑂3superscriptsubscript˙𝑛subscript𝐻2𝑂3𝑣𝑎𝑝subscript˙𝑛subscript𝐻2𝑂𝑐𝑟𝑜𝑠𝑠subscript˙𝑛subscript𝐻2𝑂𝑐𝑜𝑛𝑠𝑢𝑚subscript˙𝑛subscript𝐻2𝑐𝑟𝑜𝑠𝑠subscript𝑋subscript𝐻2\displaystyle 0=\dot{n}_{H_{2}O,2}-\dot{n}_{H_{2}O,3}-\dot{n}_{H_{2}O,3}^{vap}%-\dot{n}_{H_{2}O,cross}-\dot{n}_{H_{2}O,consum}+\dot{n}_{H_{2},cross}X_{H_{2}}0 = over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 2 end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 3 end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_v italic_a italic_p end_POSTSUPERSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_c italic_o italic_n italic_s italic_u italic_m end_POSTSUBSCRIPT + over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT(S14)

As is done on the industrial scale, the system is fed with excess water. As such, flows of water in and out of the anode are much greater than any liquid and vapor holdup in the anode. Therefore to simplify the system, the derivative term is assumed to be approximately zero in Equation S14. It is also assumed there is a recombination catalyst embedded in the anode side of the membrane which has a 90% conversion of \chH2 and \chO2 to \chH2O. Conversion of hydrogen is represented by X\chH2subscript𝑋\ch𝐻2X_{\ch{H2}}italic_X start_POSTSUBSCRIPT italic_H 2 end_POSTSUBSCRIPT. This recombination catalyst is a standard part of industrially operating PEM electrolyzers and are used to reduce the chance of a safety event occurring at the anode [Christopher_Bryce_Capuano_Morgan_Elizabeth_Pertosos_Nemanja_Danilovic2018-lw, Nicolas_Guillet2014-tq].

n˙H2O,2subscript˙𝑛subscript𝐻2𝑂2\dot{n}_{H_{2}O,2}over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 2 end_POSTSUBSCRIPT represents the liquid flowrate of water into the anode, and n˙H2O,3subscript˙𝑛subscript𝐻2𝑂3\dot{n}_{H_{2}O,3}over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 3 end_POSTSUBSCRIPT represents the liquid flowrate of water out of the anode. Other terms in the steady state water balance in Equation S14, are defined below:

n˙H2O,3vap=PH2OsatPann˙gas,3superscriptsubscript˙𝑛subscript𝐻2𝑂3𝑣𝑎𝑝superscriptsubscript𝑃subscript𝐻2𝑂𝑠𝑎𝑡subscript𝑃𝑎𝑛subscript˙𝑛𝑔𝑎𝑠3\displaystyle\dot{n}_{H_{2}O,3}^{vap}=\frac{P_{H_{2}O}^{sat}}{P_{an}}\dot{n}_{%gas,3}over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_v italic_a italic_p end_POSTSUPERSCRIPT = divide start_ARG italic_P start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_a italic_t end_POSTSUPERSCRIPT end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_n end_POSTSUBSCRIPT end_ARG over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_g italic_a italic_s , 3 end_POSTSUBSCRIPT(S15)
n˙H2O,cross=NcngiA2Fsubscript˙𝑛subscript𝐻2𝑂𝑐𝑟𝑜𝑠𝑠subscript𝑁𝑐subscript𝑛𝑔𝑖𝐴2𝐹\displaystyle\dot{n}_{H_{2}O,cross}=N_{c}\frac{n_{g}iA}{2F}over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT divide start_ARG italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_i italic_A end_ARG start_ARG 2 italic_F end_ARG(S16)
ng=2.270.70i0.02P+0.02Pi+0.003T+0.005iT0.0002PTsubscript𝑛𝑔2.270.70𝑖0.02𝑃0.02𝑃𝑖0.003𝑇0.005𝑖𝑇0.0002𝑃𝑇\displaystyle n_{g}=2.27-0.70i-0.02P+0.02Pi+0.003T+0.005iT-0.0002PTitalic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 2.27 - 0.70 italic_i - 0.02 italic_P + 0.02 italic_P italic_i + 0.003 italic_T + 0.005 italic_i italic_T - 0.0002 italic_P italic_T(S17)
n˙H2O,gen=NciA2Fsubscript˙𝑛subscript𝐻2𝑂𝑔𝑒𝑛subscript𝑁𝑐𝑖𝐴2𝐹\displaystyle\dot{n}_{H_{2}O,gen}=N_{c}\frac{iA}{2F}over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_g italic_e italic_n end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT divide start_ARG italic_i italic_A end_ARG start_ARG 2 italic_F end_ARG(S18)

In Equation S15, water vapor is assumed to be in equilibrium with liquid water at the temperature of the cell in accordance with Raoult’s Law. Equations S16 and S17 combined describe the electro-osmotic drift of water from anode to cathode at a given temperature, cathode pressure, and operating current density as described by Medina et al. [Medina2010-lh]. Equation S18 describes the consumption of water by Faraday’s law assuming 100% faradaic efficiency.

Balances for oxygen and hydrogen at the anode are shown below in Equations S19-S22. Each species is based on a mole balance with Faraday’s law of electrolysis modeling the electrochemical reaction term.

dNO2,andt𝑑subscript𝑁subscript𝑂2𝑎𝑛𝑑𝑡\displaystyle\frac{dN_{O_{2},an}}{dt}divide start_ARG italic_d italic_N start_POSTSUBSCRIPT italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_a italic_n end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG=n˙O2,genn˙O2,312n˙H2,crossXH2absentsubscript˙𝑛subscript𝑂2𝑔𝑒𝑛subscript˙𝑛subscript𝑂2312subscript˙𝑛subscript𝐻2𝑐𝑟𝑜𝑠𝑠subscript𝑋subscript𝐻2\displaystyle=\dot{n}_{O_{2},gen}-\dot{n}_{O_{2},3}-\frac{1}{2}\dot{n}_{H_{2},%cross}X_{H_{2}}= over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_g italic_e italic_n end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , 3 end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT(S19)
=NciAcell4FyO2,ann˙gas,312n˙H2,crossXH2absentsubscript𝑁𝑐𝑖subscript𝐴𝑐𝑒𝑙𝑙4𝐹subscript𝑦subscript𝑂2𝑎𝑛subscript˙𝑛𝑔𝑎𝑠312subscript˙𝑛subscript𝐻2𝑐𝑟𝑜𝑠𝑠subscript𝑋subscript𝐻2\displaystyle=N_{c}\frac{iA_{cell}}{4F}-y_{O_{2},an}\dot{n}_{gas,3}-\frac{1}{2%}\dot{n}_{H_{2},cross}X_{H_{2}}= italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT divide start_ARG italic_i italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT end_ARG start_ARG 4 italic_F end_ARG - italic_y start_POSTSUBSCRIPT italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_a italic_n end_POSTSUBSCRIPT over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_g italic_a italic_s , 3 end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT(S20)
dNH2,andt𝑑subscript𝑁subscript𝐻2𝑎𝑛𝑑𝑡\displaystyle\frac{dN_{H_{2},an}}{dt}divide start_ARG italic_d italic_N start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_a italic_n end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG=n˙H2,cross(1XH2)n˙H2,outabsentsubscript˙𝑛subscript𝐻2𝑐𝑟𝑜𝑠𝑠1subscript𝑋subscript𝐻2subscript˙𝑛subscript𝐻2𝑜𝑢𝑡\displaystyle=\dot{n}_{H_{2},cross}(1-X_{H_{2}})-\dot{n}_{H_{2},out}= over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT ( 1 - italic_X start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_o italic_u italic_t end_POSTSUBSCRIPT(S21)
=0.31iAcell2F(P\chH2,catP\chH2,an)(1XH2)yH2,ann˙gas,3absent0.31𝑖subscript𝐴𝑐𝑒𝑙𝑙2𝐹subscript𝑃\ch𝐻2𝑐𝑎𝑡subscript𝑃\ch𝐻2𝑎𝑛1subscript𝑋subscript𝐻2subscript𝑦subscript𝐻2𝑎𝑛subscript˙𝑛𝑔𝑎𝑠3\displaystyle=0.31\frac{iA_{cell}}{2F}(P_{\ch{H2},cat}-P_{\ch{H2},an})(1-X_{H_%{2}})-y_{H_{2},an}\dot{n}_{gas,3}= 0.31 divide start_ARG italic_i italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_F end_ARG ( italic_P start_POSTSUBSCRIPT italic_H 2 , italic_c italic_a italic_t end_POSTSUBSCRIPT - italic_P start_POSTSUBSCRIPT italic_H 2 , italic_a italic_n end_POSTSUBSCRIPT ) ( 1 - italic_X start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) - italic_y start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_a italic_n end_POSTSUBSCRIPT over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_g italic_a italic_s , 3 end_POSTSUBSCRIPT(S22)

Equation S19 represents the transient mole balance on oxygen. It is assumed the oxygen concentration of the water entering the anode is near zero, hence there is no oxygen flow into the anode. Equation S20 is the same transient mole balance rearranged assuming oxygen is an ideal gas.

Equation S21 represents the transient mole balance on hydrogen. The only way hydrogen can enter the anode is through crossover from the cathode, and the only way hydrogen can exit is through the anode exit gas stream. Equation S22 is the same transient mole balance rearranged assuming hydrogen as an ideal gas and using the hydrogen crossover correlation investigated by Bernt et. al [Bernt2020-af].

Cathode


A transient water balance on the cathode with the same holdup assumptions as the anode is shown in Equations S23 - S24

dNH2O,catdt=n˙H2O,crossn˙H2O,4n˙H2O,4vap𝑑subscript𝑁subscript𝐻2𝑂𝑐𝑎𝑡𝑑𝑡subscript˙𝑛subscript𝐻2𝑂𝑐𝑟𝑜𝑠𝑠subscript˙𝑛subscript𝐻2𝑂4superscriptsubscript˙𝑛subscript𝐻2𝑂4𝑣𝑎𝑝\displaystyle\frac{dN_{H_{2}O,cat}}{dt}=\dot{n}_{H_{2}O,cross}-\dot{n}_{H_{2}O%,4}-\dot{n}_{H_{2}O,4}^{vap}divide start_ARG italic_d italic_N start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_c italic_a italic_t end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG = over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 4 end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_v italic_a italic_p end_POSTSUPERSCRIPT(S23)
0=n˙H2O,crossn˙H2O,4n˙H2O,4vap0subscript˙𝑛subscript𝐻2𝑂𝑐𝑟𝑜𝑠𝑠subscript˙𝑛subscript𝐻2𝑂4superscriptsubscript˙𝑛subscript𝐻2𝑂4𝑣𝑎𝑝\displaystyle 0=\dot{n}_{H_{2}O,cross}-\dot{n}_{H_{2}O,4}-\dot{n}_{H_{2}O,4}^{vap}0 = over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 4 end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_O , 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_v italic_a italic_p end_POSTSUPERSCRIPT(S24)

The material balance for hydrogen and at the cathode are shown below in Equations S25 - S26. Each species is based on a mole balance with Faraday’s law of electrolysis modeling the electrochemical reaction term and gases are assumed ideal.

dNH2dt=n˙H2,genn˙H2,4n˙H2,cross𝑑subscript𝑁subscript𝐻2𝑑𝑡subscript˙𝑛subscript𝐻2𝑔𝑒𝑛subscript˙𝑛subscript𝐻24subscript˙𝑛subscript𝐻2𝑐𝑟𝑜𝑠𝑠\displaystyle\frac{dN_{H_{2}}}{dt}=\dot{n}_{H_{2},gen}-\dot{n}_{H_{2},4}-\dot{%n}_{H_{2},cross}divide start_ARG italic_d italic_N start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG = over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_g italic_e italic_n end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , 4 end_POSTSUBSCRIPT - over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c italic_r italic_o italic_s italic_s end_POSTSUBSCRIPT(S25)
dNH2dt=NciA2FyH2n˙gas,40.31iAcell2F(P\chH2,catP\chH2,an)(1XH2)𝑑subscript𝑁subscript𝐻2𝑑𝑡subscript𝑁𝑐𝑖𝐴2𝐹subscript𝑦subscript𝐻2subscript˙𝑛𝑔𝑎𝑠40.31𝑖subscript𝐴𝑐𝑒𝑙𝑙2𝐹subscript𝑃\ch𝐻2𝑐𝑎𝑡subscript𝑃\ch𝐻2𝑎𝑛1subscript𝑋subscript𝐻2\displaystyle\frac{dN_{H_{2}}}{dt}=N_{c}\frac{iA}{2F}-y_{H_{2}}\dot{n}_{gas,4}%-0.31\frac{iA_{cell}}{2F}(P_{\ch{H2},cat}-P_{\ch{H2},an})(1-X_{H_{2}})divide start_ARG italic_d italic_N start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG = italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT divide start_ARG italic_i italic_A end_ARG start_ARG 2 italic_F end_ARG - italic_y start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_g italic_a italic_s , 4 end_POSTSUBSCRIPT - 0.31 divide start_ARG italic_i italic_A start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_F end_ARG ( italic_P start_POSTSUBSCRIPT italic_H 2 , italic_c italic_a italic_t end_POSTSUBSCRIPT - italic_P start_POSTSUBSCRIPT italic_H 2 , italic_a italic_n end_POSTSUBSCRIPT ) ( 1 - italic_X start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )(S26)

Oxygen crossover is assumed negligible as the oxygen is much less permeable to the Nafion membrane, and the cathode is pressurized meaning oxygen transport will be effectively zero [Bernt2020-af].

5.1.3 PEM Electrolyzer Energy Balance

The energy balance is based on a lumped capacitance model described in Equations S27-S31. Water enters the anode at ambient conditions so that Tin=Trefsubscript𝑇𝑖𝑛subscript𝑇𝑟𝑒𝑓T_{in}=T_{ref}italic_T start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPT. Espinosa-Lopez et. al presented a thermal lumped capacitance model for a 60 cell PEM electrolyzer stack in which they reported a lumped thermal capacitance Cp,thsubscript𝐶𝑝𝑡C_{p,th}italic_C start_POSTSUBSCRIPT italic_p , italic_t italic_h end_POSTSUBSCRIPT and thermal resistance Rthsubscript𝑅𝑡R_{th}italic_R start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT normalized by the area of the cell [Espinosa-Lopez2018-hb]. These values for the lumped thermal capacitance and heat loss resistance were used in the model as a reference and scaled up or down based on the area of the modeled system. Vthsubscript𝑉𝑡V_{th}italic_V start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT is the thermoneutral voltage of the cell, assumed to be 1.48 Vvoltabsent\frac{\mathrm{V}}{}divide start_ARG roman_V end_ARG start_ARG end_ARG.

dTdt𝑑𝑇𝑑𝑡\displaystyle\frac{dT}{dt}divide start_ARG italic_d italic_T end_ARG start_ARG italic_d italic_t end_ARG=1Cp,th(H˙inH˙out+Q˙genQ˙loss)absent1subscript𝐶𝑝𝑡subscript˙𝐻𝑖𝑛subscript˙𝐻𝑜𝑢𝑡subscript˙𝑄𝑔𝑒𝑛subscript˙𝑄𝑙𝑜𝑠𝑠\displaystyle=\frac{1}{C_{p,th}}\left(\dot{H}_{in}-\dot{H}_{out}+\dot{Q}_{gen}%-\dot{Q}_{loss}\right)= divide start_ARG 1 end_ARG start_ARG italic_C start_POSTSUBSCRIPT italic_p , italic_t italic_h end_POSTSUBSCRIPT end_ARG ( over˙ start_ARG italic_H end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT - over˙ start_ARG italic_H end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT + over˙ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT - over˙ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT italic_l italic_o italic_s italic_s end_POSTSUBSCRIPT )(S27)
W˙insubscript˙𝑊𝑖𝑛\displaystyle\dot{W}_{in}over˙ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT=ini,inHi(Tin)absentsubscript𝑖subscript𝑛𝑖𝑖𝑛subscript𝐻𝑖subscript𝑇𝑖𝑛\displaystyle=\sum_{i}n_{i,in}H_{i}(T_{in})= ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i , italic_i italic_n end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT )(S28)
W˙outsubscript˙𝑊𝑜𝑢𝑡\displaystyle\dot{W}_{out}over˙ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT=ini,outHi(Tcell)absentsubscript𝑖subscript𝑛𝑖𝑜𝑢𝑡subscript𝐻𝑖subscript𝑇𝑐𝑒𝑙𝑙\displaystyle=\sum_{i}n_{i,out}H_{i}(T_{cell})= ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_i , italic_o italic_u italic_t end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT italic_c italic_e italic_l italic_l end_POSTSUBSCRIPT )(S29)
Q˙gensubscript˙𝑄𝑔𝑒𝑛\displaystyle\dot{Q}_{gen}over˙ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT=Nc(VtotalVtn)iAabsentsubscript𝑁𝑐subscript𝑉𝑡𝑜𝑡𝑎𝑙subscript𝑉𝑡𝑛𝑖𝐴\displaystyle=N_{c}\left(V_{total}-V_{tn}\right)iA= italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_V start_POSTSUBSCRIPT italic_t italic_o italic_t italic_a italic_l end_POSTSUBSCRIPT - italic_V start_POSTSUBSCRIPT italic_t italic_n end_POSTSUBSCRIPT ) italic_i italic_A(S30)
Q˙losssubscript˙𝑄𝑙𝑜𝑠𝑠\displaystyle\dot{Q}_{loss}over˙ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT italic_l italic_o italic_s italic_s end_POSTSUBSCRIPT=1Rth(TTambient)absent1subscript𝑅𝑡𝑇subscript𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡\displaystyle=\frac{1}{R_{th}}\left(T-T_{ambient}\right)= divide start_ARG 1 end_ARG start_ARG italic_R start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT end_ARG ( italic_T - italic_T start_POSTSUBSCRIPT italic_a italic_m italic_b italic_i italic_e italic_n italic_t end_POSTSUBSCRIPT )(S31)

The standard enthalpies of formation are included in the thermoneutral voltage, and Tref=Tin=Tambientsubscript𝑇𝑟𝑒𝑓subscript𝑇𝑖𝑛subscript𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡T_{ref}=T_{in}=T_{ambient}italic_T start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_a italic_m italic_b italic_i italic_e italic_n italic_t end_POSTSUBSCRIPT for the thermodynamic calculations. This is consistent with the energy balance presented in Espinosa et al and allows the heat generation term to be written as the potential applied over the thermoneutral voltage [Espinosa-Lopez2018-hb].

Equation S27 represents the overall energy balance for the system including all possible sources and sinks for heat. Equations S28 - S31 define those sinks and sources. For the energy in, species include water and nitrogen (if used), and for the energy out species include, water, water vapor, nitrogen (if used), hydrogen, and oxygen.

5.2 K-Means Clustering for Representative Days

K-means clustering was performed on the input price data series of hourly electricity prices. The k-means clustering algorithm works to find k𝑘kitalic_k centroids to which each of the 365 days in the year most closely correspond.

Once each day is assigned a cluster, the day closest to the cluster centroid is chosen as the representative day for that cluster. Each of these representative days then have an associated weight which signifies the number of real days that belong to the cluster. This way, the optimization can be performed in a significantly reduced time domain while still capturing much of the variability in electricity price seen throughout the year.

5.3 Storage Formulation

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (12)

5.4 Convergence Time

CaseTime (hours)
Degradation 2022 Base Case44.8
No Degradation25.2
Degradation, West Texas74.3
Degradation, Fixed CAPEX
High Temperature57.6
No Safety Constraint, Fixed CAPEX
Degradation 2030 Base Case52.1
2030 High CAPEX48.4
2030 Low CAPEX43.7
2030 High Decarbonization45.7
2030 Low Decarbonization49.4

5.5 Algorithm Scaling

Convergence time increases with an increasing number of representative days. The vast majority of constraints for each problem type are equality constraints. The LCOH seems to be converging to a singular value, albeit non monotonically. Theoretically, as the number of representative days approaches the number of real days, the LCOH would approach the real LCOH which is the LCOH of using the full price series data. 7 representative days was chosen for this study for the base case’s ability to converge <48absent48<48< 48 hours. For this particular price series it happens to be the number of representative days that has the lowest LCOH, though it was not chosen for that reason.

RepresentativeDays LCOH($/kg) ConvergenceTime(hours) Number ofVariables Number ofEqualityConstraints Number ofInequalityConstraints Number of GSSIterations Avg. GSSIterationTime(min)
2$ 6.9623.3188,469186,7287761521.8
4$ 6.9231.5199,913196,7961,5521529.5
7$ 6.6044.8217,079211,8982,7161539.6
9$ 6.8349.4228,523221,9663,4921546.3
10$ 7.0657.5234,245227,0003,8801553.9
14$ 7.1982.3257,133247,1365,4321577.2

5.6 Results from Alternate Scenarios

5.6.1 Degradation Sensitivities

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (13)
Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (14)

5.6.2 Degradation with CAPEX Fixed at No Degradation Result

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (15)

5.6.3 Impact of Higher Temperature

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (16)
Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (17)

5.6.4 Impact of Recombination Catalyst and Safety Constraint

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (18)
Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (19)

5.6.5 Future Scenarios

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (20)
Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (21)

\printbibliography

Dynamic Optimization of Proton Exchange Membrane Water Electrolzyers Considering Usage-Based Degradation (2024)

FAQs

What is the degradation rate of electrolyzers? ›

PEM electrolyzers experience 1–1.5% degradation per year at baseload operation [9]. Although most reported stack lifetime data is for continuous baseload operation, manufacturers may establish operation limits or parameters based on the type of operation.

How does a proton exchange membrane electrolyzer work? ›

In a polymer electrolyte membrane (PEM) electrolyzer, the electrolyte is a solid specialty plastic material. Water reacts at the anode to form oxygen and positively charged hydrogen ions (protons). The electrons flow through an external circuit and the hydrogen ions selectively move across the PEM to the cathode.

What are the operating conditions for PEM electrolyzer? ›

Polymer Electrolyte Membrane (PEM) Electrolysis, operates at medium temperature (50 °C - 80 °C, and pressure <30 bar).

What is the lifespan of a PEM Electrolyser? ›

As the lifetime of PEM electrolysers is at best 50,000 h, 3 stack replacements are a minimum, largely increasing the amount of consumed platinum-group metals.

What does rate of degradation mean? ›

The shift factor is a function of temperature which indicates how the degradation rate of a material is accelerated/decelerated by a change in temperature above/below some reference temperature. From: Polymer Degradation and Stability, 2019.

What does a high degradation rate mean? ›

A higher degradation rate means that the system will produce less energy over its lifetime, potentially reducing the financial benefits of installing solar panels.

What are the disadvantages of electrolysis of water? ›

Disadvantages of electrolysis of water. it takes a lot of energy to separate the water into hydrogen and oxygen. if you burn fossil fuels to create the energy for electrolysis water the process produce lots of emission. of CO2.

What are the disadvantages of PEM electrolysis? ›

1. Introduction
Hydrogen production MethodAdvantagesDisadvantages
PhotolysisO2 as byproduct, abundant feedstock, No emissions.Low efficiency, non-effective photocatalytic material, Requires sunlight.
ElectrolysisEstablished technology Zero emission Existing infrastructure O2 as byproductStorage and Transportation problem.
9 more rows

What is the efficiency of water electrolyzer? ›

Considering the industrial production of hydrogen, and using current best processes for water electrolysis (PEM or alkaline electrolysis) which have an effective electrical efficiency of 70–80%, producing 1 kg of hydrogen (which has a specific energy of 143 MJ/kg) requires 50–55 kW⋅h (180–200 MJ) of electricity.

How does a proton exchange membrane work? ›

Proton exchange membrane (PEM) electrolyzer

PEM technology is one of the popular methods for hydrogen production. In a PEM electrolyzer, water is separated into hydrogen and oxygen during an electrochemical reaction, where hydrogen and oxygen are produced at the cathode and anode, respectively.

What is the membrane for water electrolysis? ›

Proton exchange membrane (PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes.

What are the water quality requirements for electrolyzers? ›

The electrolyser is highly resilient to water input and can be fed with purified rainwater or tap water. Simple and cheap reverse osmosis processes with resin filters can provide the required water quality. The water input to the electrolyser needs to be desalinated and have a low conductivity.

What is the largest PEM electrolyzer in the world? ›

HyLYZER – the world's largest PEM electrolyzer.

Which is better PEM or alkaline electrolyzer? ›

If high-purity hydrogen is required, PEM electrolysis may be the better option, even though it may be more expensive. If lower-purity hydrogen is sufficient, alkaline electrolysis may be the more cost-effective choice.

How much will electrolyzers cost in 2030? ›

The UK-based analyst says that Western manufacturers have already committed to building factories to produce more than 42GW of electrolysers annually by 2030, providing the crucial economies of scale that will help reduce the price of electrolysers from about $1,400/kW today to $340/kW by 2030.

What is the life of an electrolyzer? ›

Plug's electrolyzer stack is the most reliable in the world, with a life expectancy of 80,000 hours. Learn more.

How efficient are electrolyzers? ›

With the AEM electrolyser we need 4.8 kWh to produce 1 Nm³ of hydrogen. That means it takes 53.3 kWh to produce 1kg of hydrogen (compressed at 35 barg and with a purity of ~99.9%). 1 kg of hydrogen contains 33.33 kWh/kg (lower heating value), i.e. our electrolyser already has an efficiency of 62.5%.

What is the lifetime of alkaline electrolyzer? ›

The stack lifetime of AEC can reach as long as 60,000–90,000 h (7–10 years).

Do hydrogen fuel cells degrade quickly? ›

When batteries are used in an electric vehicle, the performance of the vehicle degrades as the battery discharges. In contrast, fuel cell performance remains the same as long as there is hydrogen fuel in the tank.

Top Articles
Latest Posts
Article information

Author: Arline Emard IV

Last Updated:

Views: 5562

Rating: 4.1 / 5 (72 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Arline Emard IV

Birthday: 1996-07-10

Address: 8912 Hintz Shore, West Louie, AZ 69363-0747

Phone: +13454700762376

Job: Administration Technician

Hobby: Paintball, Horseback riding, Cycling, Running, Macrame, Playing musical instruments, Soapmaking

Introduction: My name is Arline Emard IV, I am a cheerful, gorgeous, colorful, joyous, excited, super, inquisitive person who loves writing and wants to share my knowledge and understanding with you.